hdu1695(容斥 or 莫比乌斯反演)
刚开始看题,想了一会想到了一种容斥的做法。复杂度O( n(3/2) )但是因为题目上说有3000组测试数据,然后吓尿。完全不敢写。 然后想别的方法。
唉,最近精神有点问题,昨天从打完bc开始想到1点多,没想到什么好的方法,然后躺床上睡不着,迷迷糊糊又好像挺清醒的,大概想到了用莫比乌斯反演的一种解法,初略的证明了一下发现应该是对的,然后才逐渐有困意,大概也快天亮了。。。 这种事发生了好几次了。上次在证明莫比乌斯反演的时候也是想到快5点才想出来。 感觉整个人都不好了。。
题目: 求在区间[1,b]和[1,d]中各选一个数,使得这两个数的gcd为k,问有多少种选法。
稍微推理下问题可以变为:在区间[1,b/k]和[1,d/k]中选两个gcd为1的数。
设b1=b/k,d1=d/k,假设b1<d1 (b1>b1时swap一下就好了)
F(x) 表示从区间[1,b1/x]和区间[1,d1/x]中任意选两个数,有多少选数的方法,其实就是(b1/x)*(d1/x)了。
f(y) 表示从区间[1,b1]和区间[1,d1]中选两个数,使得这两个数的gcd为y的所有种选法。
那么就可以得到:
F(1)=f(1)+f(2)+...+f(b1)
F(2)=f(2)+f(4)+...+f( (b1/2)*2 )
F(3)=f(3)+f(6)+...+f( (b1/3)*3 )
...
F(b1)=f(b1)
然后莫比乌斯函数miu(n)为最经典的莫比乌斯函数。
if n== 1
miu(n)=1
else
if n只由不重复的素数构成
{
if(不重复的素数个数为偶数) miu(n)=1;
else miu(n)=-1;
}
else
miu(n)=0
//其实这个只要懂了莫比乌斯反演的原理,还是很好理解的。
有了整个主题思维后,
f(1)=miu(1)*F(1)+miu(2)*F(2)+...+miu(b1)*F(b1)
因为F(x)是显而易见的,我当时一直在以往的因子和里面纠结着,以为莫比乌斯只能应用于求因子的积性函数中。其实莫比乌斯的应用远不如此。要用莫比乌斯的关键是如何找到一个很容易得到F(X)。
得到了f(1)之后还需要去重复,这个就好弄多了。
得到1-b1中所有数的欧拉函数之和sum,f(1)-sum+1即为最后的答案。
详细的见代码:
//
// main.cpp
// hdu1695
//
// Created by 陈加寿 on 15/12/13.
// Copyright (c) 2015年 陈加寿. All rights reserved.
// #include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stdlib.h>
using namespace std;
#define N 100100 int miu[N];
long long sum[N]; int phi[N];
void getphis(int maxn)
{
phi[]=;
phi[]=;
for(int i=;i<=maxn;i++) phi[i]=i;
for(int i=;i<=maxn;i+=) phi[i]/=;
for(int i=;i<=maxn;i+=)
{
if(phi[i]==i)//为素数
{
for(int j=i;j<=maxn;j+=i)
{
phi[j]=phi[j]-phi[j]/i; }
}
}
} int main() {
miu[]=;
for(int i=;i<N;i++)
{
int ti=i;
int tcnt=;
for(int j=;j*j<=ti;j++)
{
if(ti%j==)
{
ti/=j;
tcnt++;
if(ti%j==)
{
tcnt=-;
miu[ i ]=;
break;
}
}
}
if(tcnt!=-)
{
if(ti>)
{
tcnt++;
}
miu[i] = tcnt%==?:-;
}
}
getphis(N-);
sum[]=;
for(int i=;i<N;i++)
sum[i] += sum[i-]+phi[i]; int tt=;
int T;
cin>>T;
while(T--)
{
int a,b,c,d,k;
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("Case %d: ",tt++);
if(k==)
{
//这个是什么鬼。
printf("0\n");
continue;
} b/=k;
d/=k; if(b== || d==)
{
printf("0\n");
continue;
}
if(b>d) swap(b,d);
long long ans=;
for(int i=;i<=b;i++)
{
ans += miu[i]*( (long long)(b/i)*(d/i) );
}
ans -= sum[b];
cout<<ans+<<endl;
}
return ;
}
GCD
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8094 Accepted Submission(s): 3017
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
1 3 1 5 1
1 11014 1 14409 9
Case 2: 736427
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
hdu1695(容斥 or 莫比乌斯反演)的更多相关文章
- BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4493 Solved: 2695[Submit][Statu ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- 【容斥原理,莫比乌斯反演】用容斥替代莫比乌斯反演第二种形式解决gcd统计问题
名字虽然很长.但是其实很简单,对于这一类问题基本上就是看你能不能把统计的公式搞出来(这时候需要一个会推公式的队友) 来源于某次cf的一道题,盼望上紫的我让潘学姐帮我代打一道题,她看了看跟我说了题解,用 ...
- 【CF900D】Unusual Sequences 容斥(莫比乌斯反演)
[CF900D]Unusual Sequences 题意:定义正整数序列$a_1,a_2...a_n$是合法的,当且仅当$gcd(a_1,a_2...a_n)=x$且$a_1+a_2+...+a_n= ...
- 洛谷P4318 完全平方数(容斥,莫比乌斯反演)
传送门 求第$k$个没有完全平方数因数的数 一开始是想筛一波莫比乌斯函数,然后发现时间复杂度要炸 于是老老实实看了题解 一个数的排名$k=x-\sum_{i=1}^{x}{(1-|\mu(i)|)}$ ...
- ZOJ 3868 GCD Expectation (容斥+莫比乌斯反演)
GCD Expectation Time Limit: 4 Seconds Memory Limit: 262144 KB Edward has a set of n integers {a1 ...
- BZoj 2301 Problem b(容斥定理+莫比乌斯反演)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 7732 Solved: 3750 [Submi ...
- 【HDU1695】GCD(莫比乌斯反演)
[HDU1695]GCD(莫比乌斯反演) 题面 题目大意 求\(a<=x<=b,c<=y<=d\) 且\(gcd(x,y)=k\)的无序数对的个数 其中,你可以假定\(a=c= ...
- hdu 6390 欧拉函数+容斥(莫比乌斯函数) GuGuFishtion
http://acm.hdu.edu.cn/showproblem.php?pid=6390 题意:求一个式子 题解:看题解,写代码 第一行就看不出来,后面的sigma公式也不会化简.mobius也不 ...
随机推荐
- kubernetes监控--Prometheus
本文基于kubernetes 1.5.2版本编写 kube-state-metrics kubectl create ns monitoring kubectl create sa -n monito ...
- appium python学习记录
这是网上找到的测试用例 from appium import webdriver desired_caps = {} desired_caps['platformName'] = 'Android' ...
- IntelliJ IDEA 取消控制台行数限制
在idea7之后的版本中取消了 控制台行数设置 选项,只能通过更改配置文件进行更改 在%安装目录%/bin中找到idea.properties文件,更改idea.cycle.buffer.size项值 ...
- asp.net显示评论的时候为几天前的格式
自己做的一个小项目实现的功能,做个记录先~ 效果如图: 代码如下: public static class TimerHelper { public static string GetTimeSpan ...
- 关于批量插入数据之我见(100万级别的数据,mysql)
因前段时间去面试,问到怎样高效向数据库插入10万条记录,之前没处理过类似问题.也没看过相关资料,结果没答上来,今天就查了些资料.总结出三种方法: 測试数据库为mysql!!! 方法一: public ...
- java.lang.IllegalArgumentException: Wrong state classs
java.lang.IllegalArgumentException: Wrong state class, expecting View State but received class cn.et ...
- Vue笔记五
十二.过滤器(filter) 示例代码: <template> <div id="app"> {{ msg | capitalize }} </div ...
- 偶遇 smon 进程cpu 开销高异常分析
今天突然发现线上一台oracle 数据库 servercpu 跑的非常高.感觉不是非常正常,细致看了下.发现是smon 进程吃掉了一个cpu. 那么这个smon 进程究竟在倒腾啥玩意 对smon 进程 ...
- Archlinux风扇设置
在笔记本(ThinkPad T440)连续两天因过热而死机后, 对内核的风扇控制算法果断失去信心. 风扇的用户层控制接口是 /proc/acpi/ibm/fan, 但为防止用户控制不当烧坏机器, 默认 ...
- myBatis插入oracle获取主键
<insert id="insert" parameterType="com.inspur.biz.entry.SpLackApply"> < ...