洛谷 P4139 上帝与集合的正确用法 解题报告
P4139 上帝与集合的正确用法
题目描述
根据一些书上的记载,上帝的一次失败的创世经历是这样的:
第一天, 上帝创造了一个世界的基本元素,称做“元”。
第二天, 上帝创造了一个新的元素,称作“α”。“α”被定义为“元”构成的集合。容易发现,一共有两种不同的“α”。
第三天, 上帝又创造了一个新的元素,称作“β”。“β”被定义为“α”构成的集合。容易发现,一共有四种不同的“β”。
第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合。显然,一共会有16种不同的“γ”。
如果按照这样下去,上帝创造的第四种元素将会有65536种,第五种元素将会有2^65536种。这将会是一个天文数字。
然而,上帝并没有预料到元素种类数的增长是如此的迅速。他想要让世界的元素丰富起来,因此,日复一日,年复一年,他重复地创造着新的元素……
然而不久,当上帝创造出最后一种元素“θ”时,他发现这世界的元素实在是太多了,以致于世界的容量不足,无法承受。因此在这一天,上帝毁灭了世界。
至今,上帝仍记得那次失败的创世经历,现在他想问问你,他最后一次创造的元素“θ”一共有多少种?
上帝觉得这个数字可能过于巨大而无法表示出来,因此你只需要回答这个数对p取模后的值即可。
你可以认为上帝从“α”到“θ”一共创造了\(10^9\)次元素,或\(10^{18}\)次,或者干脆∞次。
一句话题意:\(2^{2^{2^{\dots}}}\bmod p\)
输入输出格式
输入格式:
第一行一个整数\(T\),表示数据个数。
接下来\(T\)行,每行一个正整数\(p\),代表你需要取模的值
输出格式:
\(T\)行,每行一个正整数,为答案对\(p\)取模后的值
说明
对于100%的数据,\(T\le 1000,p \le 10^7\)
其实就是裸到扩展欧拉定理
先把\(\varphi(1-1e7)\)筛出来
然后递归进去求,直到某一项为0,再快速幂回来
复杂度大概是两个log的?
扩展欧拉定理
\begin{cases}
a^{b \ mod \ \varphi(p)},(a,p)=1 \\
a^b,(a,p)\not=1,b<\varphi(p) \\
a^{b \ mod \ \varphi(p)+\varphi(p)},(a,p)\not=1,b \ge \varphi(p)
\end{cases}
\ \ mod \ p
\]
Code:
#include <cstdio>
#define ll long long
const int N=1e7;
int phi[N+10],v[N+10],pri[N+10],is_pri[N+10],cnt;
void Euler()
{
for(int i=2;i<=N;i++)
{
if(!is_pri[i])
{
v[i]=i;
phi[i]=i-1;
pri[++cnt]=i;
}
for(int j=1;j<=cnt&&i*pri[j]<=N;j++)
{
if(pri[j]>v[i]) break;
is_pri[pri[j]*i]=1;
v[pri[j]*i]=pri[j];
phi[pri[j]*i]=phi[i]*(i%pri[j]?pri[j]-1:pri[j]);
}
}
}
ll quickpow(ll d,ll k,ll p)
{
ll f=1;
while(k)
{
if(k&1) f=f*d%p;
d=d*d%p;
k>>=1;
}
return f;
}
ll dfs(int p)
{
if(p==2) return 0;
return quickpow(2,dfs(phi[p])%phi[p]+(p&1?0:phi[p]),p);
}
int main()
{
Euler();
ll t,p;
scanf("%lld",&t);
while(t--)
{
scanf("%lld",&p);
printf("%lld\n",dfs(p));
}
return 0;
}
2018.9.7
洛谷 P4139 上帝与集合的正确用法 解题报告的更多相关文章
- 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]
题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...
- 题解-洛谷P4139 上帝与集合的正确用法
上帝与集合的正确用法 \(T\) 组数据,每次给定 \(p\),求 \[\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod p ...
- 洛谷 P4139 上帝与集合的正确用法
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...
- 洛谷P4139 上帝与集合的正确用法 拓欧
正解:拓展欧拉定理 解题报告: 首先放上拓欧公式? if ( b ≥ φ(p) ) ab ≡ ab%φ(p)+φ(p)(mod p)else ab≡ab mod φ(p) (mod p) 首先利用扩 ...
- [洛谷P4139]上帝与集合的正确用法
题目大意:多次询问,每次给你$p$询问$2^{2^{2^{\dots}}}\bmod p$ 题解:扩展欧拉定理,求出$\varphi(p)$即可.因为$2^{2^{2^{\dots}}}>> ...
- 【洛谷】P4139 上帝与集合的正确用法
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天,上帝创造了一个世界的基本元素,称做“元”. 第二天,上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...
- P4139 上帝与集合的正确用法
本题是欧拉定理的应用.我这种蒟蒻当然不知道怎么证明啦! 那么我们就不证明了,来直接看结论: ab≡⎧⎩⎨⎪⎪ab%φ(p)abab%φ(p)+φ(p)gcd(a,p)=1gcd(a,p)≠1,b< ...
- Luogu P4139 上帝与集合的正确用法【扩展欧拉定理】By cellur925
题目传送门 题目中的式子很符合扩展欧拉定理的样子.(如果你还不知扩展欧拉定理,戳).对于那一堆糟心的2,我们只需要递归即可,递归边界是模数为1. 另外,本题中好像必须要用快速乘的样子...否则无法通过 ...
- luogu P4139 上帝与集合的正确用法(扩展欧拉定理)
本蒟蒻现在才知带扩展欧拉定理. 对于任意的\(b\geq\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)+\varphi(p)}(mod\ p)\) 当\ ...
随机推荐
- 【A* 网络流】codechef Chef and Cut
高嘉煊讲的杂题:A*和网络流的练手题 题目大意 https://s3.amazonaws.com/codechef_shared/download/translated/SEPT16/mandarin ...
- mariadb源码编译安装及多实例
准备文件源文件/app/mariadb-10.2.12.tar.gz cd /app/ tar xf mariadb-10.2.12.tar.gz cd mariadb-10.2.12 mkdir ...
- ELK+kafka日志处理
此次使用kafka代替redis,elk集群搭建过程请参考:https://www.cnblogs.com/dmjx/p/9120474.html kafka名词解释: 1.话题(Topic):是特定 ...
- Struts2之类范围拦截器和方法拦截器
1.Struts2拦截器的体系结构 Struts2拦截器最大的特点是其透明性,即用户感觉不到它的存在,但我们在使用Struts2框架时,拦截器时时刻刻都在帮助我们处理很多事情. 包括: 文件上传 表单 ...
- tcl之string操作-length/index/range/replace
- myql简单语法测试
删除某一行 delete from name1 where agee=10 limit 1; insert into name1(agee,namee)values(10,'wwww'),(10,' ...
- 虚拟机无法ping通物理机的解决方案
环境:Windows7下安装虚拟机,虚拟机上装有Ubuntu16.04的server版系统. 1.打开Windows防火墙,在打开或关闭Windows防火墙中 关闭Windows的防火墙. 2.禁用服 ...
- poj 1957 二分搜索
题意:N个灯泡离地H_i,满足H1 = A ,Hi = (Hi-1 + Hi+1)/2 – 1,HN = B ,求最小B. 思路: 只要二分第二个灯泡的高度就可以推出全部灯泡的高度 如果hi<0 ...
- [bzoj1552][Cerc2007]robotic sort&&[bzoj3506][Cqoi2014]排序机械臂
非常垃圾的一道平衡树,结果被日了一天.很难受嗷嗷嗷 首先不得不说网上的题解让我这个本来就不熟悉平衡树的彩笔很难受——并不好理解. 还好Sinogi大佬非常的神,一眼就切掉了,而且用更加美妙的解法. 题 ...
- 利用插件对某些网页执行javascript代码
说明 javascript在浏览器地址栏中可以运行,也可以按F12在控制台中运行,还可以写一个插件让javascript针对某些网页执行,可以使用chrome浏览器的Content scripts,C ...