histogram

A histogram is an accurate representation of the distribution of numerical data. It is an estimate of the probability distribution of a continuous variable (quantitative variable) and was first introduced by Karl Pearson.To construct a histogram, the first step is to "bin" (or "bucket") the range of values—that is, divide the entire range of values into a series of intervals—and then count how many values fall into each interval. The bins are usually specified as consecutive, non-overlapping intervals of a variable. The bins (intervals) must be adjacent, and are often (but are not required to be) of equal size.

matplotlib.pyplot.hist

matplotlib.pyplot.hist(xbins=Nonerange=Nonedensity=Noneweights=Nonecumulative=Falsebottom=Nonehisttype='bar'align='mid'orientation='vertical'rwidth=Nonelog=Falsecolor=Nonelabel=Nonestacked=Falsenormed=Nonehold=Nonedata=None, ***kwargs*)

Plot a histogram.

Compute and draw the histogram of x. The return value is a tuple (n, bins, patches) or ([n0, n1, …], bins, [patches0, patches1,…]) if the input contains multiple data.

Multiple data can be provided via x as a list of datasets of potentially different length ([x0, x1, …]), or as a 2-D ndarray in which each column is a dataset. Note that the ndarray form is transposed relative to the list form.

Masked arrays are not supported at present.

parameters

x : (n,) array or sequence of (n,) arrays

Input values, this takes either a single array or a sequence of arrays which are not required to be of the same length.

bins : integer or sequence or ‘auto’, optional

bins 即是 根据x中的数据集 划分 合适的组数。一般可以先用'auto',然后在此基础上对bins进行微调。

​ If an integer is given, bins + 1 bin edges are calculated and returned, consistent with numpy.histogram().

​ If bins is a sequence, gives bin edges, including left edge of first bin and right edge of last bin. In this case, bins is returned unmodified.

​ All but the last (righthand-most) bin is half-open. In other words, if bins is:

[1, 2, 3, 4]

​ then the first bin is [1, 2) (including 1, but excluding 2) and the second [2, 3). The last bin, however, is [3, 4], which includes 4.

​ Unequally spaced bins are supported if bins is a sequence.

​ If Numpy 1.11 is installed, may also be 'auto'.

​ Default is taken from the rcParam hist.bins.

density : boolean, optional

​ If True, the first element of the return tuple will be the counts normalized to form a probability density, i.e., the area (or integral) under the histogram will sum to 1. This is achieved by dividing the count by the number of observations times the bin width and not dividing by the total number of observations. If stacked is also True, the sum of the histograms is normalized to 1.

​ Default is None for both normed and density. If either is set, then that value will be used. If neither are set, then the args will be treated as False.

​ If both density and normed are set an error is raised.

returns

n : array or list of arrays

​ The values of the histogram bins. See normed or density and weights for a description of the possible semantics. If input x is an array, then this is an array of length nbins. If input is a sequence arrays [data1, data2,..], then this is a list of arrays with the values of the histograms for each of the arrays in the same order.

​ 默认,n 返回 落在每个区间里的数 的频数 的list;若指定density = True,n 返回 每个区间的概率密度值的列表

bins : array

​ The edges of the bins. Length nbins + 1 (nbins left edges and right edge of last bin). Always a single array even when multiple data sets are passed in.

patches : list or list of lists

​ Silent list of individual patches used to create the histogram or list of such list if multiple input datasets.

例子

ex1

#!/usr/bin/env python3
#-*- coding:utf-8 -*-
############################
#File Name: hist.py
#Brief:
#Author: frank
#Mail: frank0903@aliyun.com
#Created Time:2018-06-13 22:03:35
############################ import matplotlib.pyplot as plt
import numpy as np a = [34, 40, 37, 30, 44, 36, 32, 26, 32, 36]
n,bins,patches = plt.hist(a,bins='auto')
print("n:{}, bins:{},pathes:{}".format(n,bins,patches))
plt.show()

从上例可知,bins 区间的个数为5个,即

[26,29.6], 落在 [26,29.6] 里的数是26, 频数是1

[29.6,33.2],落在[29.6,33.2]里的数是 30,32,32,频数是3

[33.2,36.8],落在[33.2,36.8]里的数是 34,36,36,频数是3

[36.8,40.4],落在[36.8,40.4]里的数是 37,40,频数是2

[40.4,44],落在[40.4,44]里的数是44,频数是1

ex2

看density参数对直方图的影响

#!/usr/bin/env python3
#-*- coding:utf-8 -*-
############################
#File Name: hist.py
#Brief:
#Author: frank
#Mail: frank0903@aliyun.com
#Created Time:2018-06-13 22:03:35
############################ import matplotlib.pyplot as plt
import numpy as np a = [34, 40, 37, 30, 44, 36, 32, 26, 32, 36]
n,bins,patches = plt.hist(a,bins='auto',density=True)
print("n:{}, bins:{},pathes:{}".format(n,bins,patches))
plt.show()

从上例可知,当density为True时,直方图的y轴表示的是概率密度值。

\(\text{the bin width}=\frac {max-min}{bins}=\frac{44-26}{5}=3.6\)

[26,29.6], 落在 [26,29.6] 里的数是26, 频数是1,\(\frac {频数}{\text{the number of observations} \cdot \text{the bin width}}=\frac {1}{10\cdot 3.6}=0.02777778\)

其他区间的类似

python之histogram的更多相关文章

  1. Prometheus学习系列(三)之Prometheus 概念:数据模型、metric类型、任务、实例

    前言 本文来自Prometheus官网手册1.Prometheus官网手册2 和 Prometheus简介 说明 Prometheus从根本上存储的所有数据都是时间序列: 具有时间戳的数据流只属于单个 ...

  2. 灰度图的直方图均衡化(Histogram Equalization)原理与 Python 实现

    原理 直方图均衡化是一种通过使用图像直方图,调整对比度的图像处理方法:通过对图像的强度(intensity)进行某种非线性变换,使得变换后的图像直方图为近似均匀分布,从而,达到提高图像对比度和增强图片 ...

  3. python绘制图的度分布柱状图, draw graph degree histogram with Python

    图的度数分布 import collections import matplotlib.pyplot as plt import networkx as nx G = nx.gnp_random_gr ...

  4. [LeetCode]题解(python):084-Largest Rectangle in Histogram

    题目来源: https://leetcode.com/problems/largest-rectangle-in-histogram/ 题意分析: 给定一个数组,数组的数字代表这个位置上的bar的高度 ...

  5. [leetcode]Largest Rectangle in Histogram @ Python

    原题地址:https://oj.leetcode.com/problems/largest-rectangle-in-histogram/ 题意: Given n non-negative integ ...

  6. opencv python:图像直方图 histogram

    直接用matplotlib画出直方图 def plot_demo(image): plt.hist(image.ravel(), 256, [0, 256]) # image.ravel()将图像展开 ...

  7. 【LeetCode】84. Largest Rectangle in Histogram 柱状图中最大的矩形(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 单调栈 日期 题目地址: https://leetc ...

  8. 1 python大数据挖掘系列之基础知识入门

    preface Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们. Python数据分析与挖掘技术概述 所谓数据分析,即对已知的数据进行分析 ...

  9. Python绘图

    1.二维绘图 a. 一维数据集 用 Numpy ndarray 作为数据传入 ply 1. import numpy as np import matplotlib as mpl import mat ...

随机推荐

  1. 在ios中微信video和audio无法自动播放解决方案

    WeixinJSBridgeReady页面初始化的时候会执行 document.addEventListener("WeixinJSBridgeReady", function ( ...

  2. ylbtech-LanguageSamples-Indexers(索引器)

    ylbtech-Microsoft-CSharpSamples:ylbtech-LanguageSamples-Indexers(索引器) 1.A,示例(Sample) 返回顶部 “索引器”示例 本示 ...

  3. [转]SQLSERVER存储过程调用不同数据库的数据_存储过程中通过链接服务器访问远程服务器

    本文转自:http://blog.csdn.net/nnaabbcc/article/details/7967761 存储过程调用不同数据库的数据 在存储过程调用不同数据库的数据该如何做,比如在存储过 ...

  4. DSSM 深度学习解决 NLP 问题:语义相似度计算

    https://cloud.tencent.com/developer/article/1005600

  5. PHP之is_a()函数执行代码之总结

    今天看到云舒在群里贴的漏洞公告,原始的文章在 http://www.byte.nl/blog/2011/09/23/security-bug-in-is_a-function-in-php-5-3-7 ...

  6. python 如何调用子文件下的模块

    在python开发中,经常会出现调用子文件夹下的py模块 如上图,如果在test.py文件中,要调用meeting文件夹下面的huodongshu.py 模块, 直接在test.py 中 import ...

  7. HDU1505(HDU1506的加强版)

    昨天打 CF又跪了.近期睡不好睡不好睡不好-感觉整个人都累傻了,根本无办法写下去,只写了一题签到题就跪了orz..从未试过这么悲剧. 今天早上凭着我的意念("怨念").七点又起来了 ...

  8. es服务

    #!/bin/bash #chkconfig:2345 20 90 #description: elastic service #processname: elastic ROOT_PATH=/es5 ...

  9. Converter -> public static int ToInt32(double value) 你用对了么?

    Convert.ToInt32()  是我们经常使用的方法,但如果我们写如下的代码,能确定它的输出值么? var x = 7.5; Console.WriteLine(7.5 + ": &q ...

  10. Linux 搭建svn环境

    第一步:下载并安装svn sudo apt-get install subversion 第二步:创建版本库目录(此仅为目录,为后面创建版本库提供存放位置) 选择在var路径下创建版本库,当前处于根目 ...