POJ 3845 Fractal(计算几何の旋转缩放)
Description
1. fine structure at arbitrarily small scales;
2. self-similarity, i.e., magnified it looks like a copy of itself;
3. a simple, recursive definition.
Approximate fractals are found a lot in nature, for example, in structures such as clouds, snow flakes, mountain ranges, and river networks.

In this problem, we consider fractals generated by the following algorithm: we start with a polyline, i.e., a set of connected line segments. This is what we call a fractal of depth one (see leftmost picture). To obtain a fractal of depth two, we replace each line segment with a scaled and rotated version of the original polyline (see middle picture). By repetitively replacing the line segments with the polyline, we obtain fractals of arbitrary depth and very fine structures arise. The rightmost picture shows a fractal of depth three.
The complexity of an approximate fractal increases quickly as its depth increases. We want to know where we end up after traversing a certain fraction of its length.
Input
The length of each line segment of the polyline is smaller than the distance between the first point (x1, y1) and the last point (xn, yn) of the polyline. The length of the complete polyline is smaller than twice this distance.
Output
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std; const int MAXN = ;
const double EPS = 1e-;
const double PI = acos(-1.0);//3.14159265358979323846
const double INF = ; inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y, ag;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator == (const Point &rhs) const {
return sgn(x - rhs.x) == && sgn(y - rhs.y) == ;
}
bool operator < (const Point &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (const double &b) const {
return Point(x * b, y * b);
}
Point operator / (const double &b) const {
return Point(x / b, y / b);
}
double length() {
return sqrt(x * x + y * y);
}
Point unit() {
return *this / length();
}
void print() {
printf("%.10f %.10f\n", x, y);
}
};
typedef Point Vector; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn left
double cross(const Point &sp, const Point &ed, const Point &op) {
return sgn(cross(sp - op, ed - op));
} double area(const Point& a, const Point &b, const Point &c) {
return fabs(cross(a - c, b - c)) / ;
}
//counter-clockwise
Point rotate(const Point &p, double angle, const Point &o = Point(, )) {
Point t = p - o;
double x = t.x * cos(angle) - t.y * sin(angle);
double y = t.y * cos(angle) + t.x * sin(angle);
return Point(x, y) + o;
} struct Seg {
Point st, ed;
double ag;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
void makeAg() {
ag = atan2(ed.y - st.y, ed.x - st.x);
}
};
typedef Seg Line; //ax + by + c > 0
Line buildLine(double a, double b, double c) {
if(sgn(a) == && sgn(b) == ) return Line(Point(sgn(c) > ? - : , INF), Point(, INF));
if(sgn(a) == ) return Line(Point(sgn(b), -c/b), Point(, -c/b));
if(sgn(b) == ) return Line(Point(-c/a, ), Point(-c/a, sgn(a)));
if(b < ) return Line(Point(, -c/b), Point(, -(a + c) / b));
else return Line(Point(, -(a + c) / b), Point(, -c/b));
} void moveRight(Line &v, double r) {
double dx = v.ed.x - v.st.x, dy = v.ed.y - v.st.y;
dx = dx / dist(v.st, v.ed) * r;
dy = dy / dist(v.st, v.ed) * r;
v.st.x += dy; v.ed.x += dy;
v.st.y -= dx; v.ed.y -= dx;
} bool isOnSeg(const Seg &s, const Point &p) {
return (p == s.st || p == s.ed) ||
(((p.x - s.st.x) * (p.x - s.ed.x) < ||
(p.y - s.st.y) * (p.y - s.ed.y) < ) &&
sgn(cross(s.ed, p, s.st) == ));
} bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
(max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
(max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
(max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
(cross(s2, e1, s1) * cross(e1, e2, s1) >= ) &&
(cross(s1, e2, s2) * cross(e2, e1, s2) >= );
} bool isIntersected(const Seg &a, const Seg &b) {
return isIntersected(a.st, a.ed, b.st, b.ed);
} bool isParallel(const Seg &a, const Seg &b) {
return sgn(cross(a.ed - a.st, b.ed - b.st)) == ;
} //return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
}
//point of intersection
Point operator * (const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} bool isEqual(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
return sgn(A1 * B2 - A2 * B1) == && sgn(A1 * C2 - A2 * C1) == && sgn(B1 * C2 - B2 * C1) == ;
} struct Poly {
int n;
Point p[MAXN];//p[n] = p[0]
void init(Point *pp, int nn) {
n = nn;
for(int i = ; i < n; ++i) p[i] = pp[i];
p[n] = p[];
}
double area() {
if(n < ) return ;
double s = p[].y * (p[n - ].x - p[].x);
for(int i = ; i < n; ++i)
s += p[i].y * (p[i - ].x - p[i + ].x);
return s / ;
}
}; void Graham_scan(Point *p, int n, int *stk, int &top) {//stk[0] = stk[top]
sort(p, p + n);
top = ;
stk[] = ; stk[] = ;
for(int i = ; i < n; ++i) {
while(top && cross(p[i], p[stk[top]], p[stk[top - ]]) >= ) --top;
stk[++top] = i;
}
int len = top;
stk[++top] = n - ;
for(int i = n - ; i >= ; --i) {
while(top != len && cross(p[i], p[stk[top]], p[stk[top - ]]) >= ) --top;
stk[++top] = i;
}
}
//use for half_planes_cross
bool cmpAg(const Line &a, const Line &b) {
if(sgn(a.ag - b.ag) == )
return sgn(cross(b.ed, a.st, b.st)) < ;
return a.ag < b.ag;
}
//clockwise, plane is on the right
bool half_planes_cross(Line *v, int vn, Poly &res, Line *deq) {
int i, n;
sort(v, v + vn, cmpAg);
for(i = n = ; i < vn; ++i) {
if(sgn(v[i].ag - v[i-].ag) == ) continue;
v[n++] = v[i];
}
int head = , tail = ;
deq[] = v[], deq[] = v[];
for(i = ; i < n; ++i) {
if(isParallel(deq[tail - ], deq[tail]) || isParallel(deq[head], deq[head + ]))
return false;
while(head < tail && sgn(cross(v[i].ed, deq[tail - ] * deq[tail], v[i].st)) > )
--tail;
while(head < tail && sgn(cross(v[i].ed, deq[head] * deq[head + ], v[i].st)) > )
++head;
deq[++tail] = v[i];
}
while(head < tail && sgn(cross(deq[head].ed, deq[tail - ] * deq[tail], deq[head].st)) > )
--tail;
while(head < tail && sgn(cross(deq[tail].ed, deq[head] * deq[head + ], deq[tail].st)) > )
++head;
if(tail <= head + ) return false;
res.n = ;
for(i = head; i < tail; ++i)
res.p[res.n++] = deq[i] * deq[i + ];
res.p[res.n++] = deq[head] * deq[tail];
res.n = unique(res.p, res.p + res.n) - res.p;
res.p[res.n] = res.p[];
return true;
} /*******************************************************************************************/ Point p[MAXN], ans;
double f[], sum[MAXN];
double len, sqrt2 = sqrt();
int c, n, d; void dfs(const Point &a, const Point &b, double len, int dep) {
if(dep == ) {
ans = (b - a) * len / dist(a, b) + a;
} else {
for(int i = ; i < n; ++i) {
if(sgn(sum[i] * dist(a, b) / dist(p[], p[n - ]) * f[dep] - len) < ) continue;
double angle1 = atan2(p[n - ].y - p[].y, p[n - ].x - p[].x);
double angle2 = atan2(b.y - a.y, b.x - a.x);
Point o = rotate(p[i - ], angle2 - angle1, p[]);
o = (o - p[]) * dist(a, b) / dist(p[], p[n - ]) + a;
Point t = rotate(p[i], angle2 - angle1, p[]);
t = (t - p[]) * dist(a, b) / dist(p[], p[n - ]) + a;
dfs(o, t, len - sum[i - ] * f[dep] * dist(a, b) / dist(p[], p[n - ]), dep - );
return ;
}
}
} void solve() {
sum[] = ;
for(int i = ; i < n; ++i) sum[i] = sum[i - ] + dist(p[i - ], p[i]);
f[] = ;
double tmp = sum[n - ] / dist(p[], p[n - ]);
for(int i = ; i <= d; ++i) f[i] = f[i - ] * tmp;
dfs(p[], p[n - ], len * sum[n - ] * f[d], d);
} int main() {
scanf("%d", &c);
while(c--) {
scanf("%d", &n);
for(int i = ; i < n; ++i) p[i].read();
scanf("%d%lf", &d, &len);
solve();
printf("(%.10f,%.10f)\n", ans.x, ans.y);
}
}
POJ 3845 Fractal(计算几何の旋转缩放)的更多相关文章
- osg矩阵变换节点-----平移旋转缩放
osg矩阵变换节点-----平移旋转缩放 转自:http://www.cnblogs.com/ylwn817/articles/1973396.html 平移旋转缩放这个三个是osg矩阵操作中,最常见 ...
- osg中使用MatrixTransform来实现模型的平移/旋转/缩放
osg中使用MatrixTransform来实现模型的平移/旋转/缩放 转自:http://www.cnblogs.com/kekec/archive/2011/08/15/2139893.html# ...
- Blender模型导入进Unity,旋转缩放的调整
Blender跟Unity的XYZ轴不同的原因,导致Blender模型导入Unity之后会发生模型朝向不对. 请先看看下边这个情况: 首先,Blender物体模式下,对模型进行 旋转 缩放,将会在右边 ...
- POJ 3608 Bridge Across Islands(计算几何の旋转卡壳)
Description Thousands of thousands years ago there was a small kingdom located in the middle of the ...
- hdu 3934&&poj 2079 (凸包+旋转卡壳+求最大三角形面积)
链接:http://poj.org/problem?id=2079 Triangle Time Limit: 3000MS Memory Limit: 30000K Total Submissio ...
- Android图片旋转,缩放,位移,倾斜,对称完整示例(一)——imageView.setImageMatrix(matrix)和Matrix
MainActivity如下: import android.os.Bundle; import android.view.MotionEvent; import android.view.View; ...
- poj 2187 凸包加旋转卡壳算法
题目链接:http://poj.org/problem?id=2187 旋转卡壳算法:http://www.cppblog.com/staryjy/archive/2009/11/19/101412. ...
- OpenGL绘制简单场景,实现旋转缩放平移和灯光效果
本项目实现了用OpenGL绘制一个简单场景,包括正方体.球体和网格,实现了物体的旋转.缩放.平移和灯光效果.附有项目完整代码.有具体凝视.适合刚開始学习的人熟悉opengl使用. 开发情况 开发环境V ...
- unity3d简单的相机跟随及视野旋转缩放
1.实现相机跟随主角运动 一种简单的方法是把Camera直接拖到Player下面作为Player的子物体,另一种方法是取得Camera与Player的偏移向量,并据此设置Camera位置,便能实现简单 ...
随机推荐
- php-预定义
php预定义异常 Exception是所有异常的基类 属性 message:异常消息内容 code:异常代码 file:抛出异常的文件名 line:抛出异常在该文件的行号 ErrorException ...
- CF1066D Boxes Packing(二分答案)
题意描述: 你有$n$个物品,每个物品大小为$a_i$,$m$个盒子,每个盒子的容积为$k$.$Maksim$先生想把物品装入盒子中.对于每个物品,如果能被放入当前的盒子中,则放入当前盒子,否则换一个 ...
- vuejs 预渲染插件 prerender-spa-plugin 生成多页面 -- SEO
前端vue等框架打包的项目一般为SPA应用,而单页面是不利于SEO的,现在的解决方案有两种: 1.SSR服务器渲染 了解服务器渲染请进,这里不做记录. 2.预渲染模式 这比服务端渲染要简单很多 ...
- OAuth2.0 与 oauth2-server 库的使用
作者:baiyi链接:https://www.jianshu.com/p/83b0f6d82d6c來源:简书 OAuth2.0 是关于授权的开放网络标准,它允许用户已第三方应用获取该用户在某一网站的私 ...
- STM32JTAG口用作普通IO的配置
使用Jlink向STM32烧录程序时,需要使用6个芯片的引脚(以STM32F103C8T6为例),分别是PB4/JNTRST.PB3/JTDO.PA13/JTMS.PA14/JTCK.PA15/JTD ...
- linux使用logrotate工具管理日志轮替
对于Linux系统安全来说,日志文件是极其重要的工具.logrotate程序是一个日志文件管理工具.用于分割日志文件,删除旧的日志文件,并创建新的日志文件,起到"转储"作用.可以节 ...
- python 爬虫(爬取网页的img并下载)
from urllib.request import urlopen # 引用第三方库 import requests #引用requests/用于访问网站(没安装需要安装) from pyquery ...
- Python写网络后台脚本
Python写网络后台脚本. 首先安装Python3.6.5,在centos中自带的Python是2.6版本的,现在早就出现了3.6版本了况且2和3 之间的差距还是比较大的,所以我选择更新一下Pyth ...
- Redis的n种妙用,不仅仅是缓存
redis是键值对的数据库,常用的五种数据类型为字符串类型(string),散列类型(hash),列表类型(list),集合类型(set),有序集合类型(zset) Redis用作缓存,主要两个用途: ...
- BZOJ1228: [SDOI2009]E&D(打表SG)
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 983 Solved: 583[Submit][Status][Discuss] Descriptio ...