洛谷 P3521 [POI2011]ROT-Tree Rotations 解题报告
P3521 [POI2011]ROT-Tree Rotations
题意:递归给出给一棵\(n(1≤n≤200000)\)个叶子的二叉树,可以交换每个点的左右子树,要求前序遍历叶子的逆序对最少。
大体给出方式:
第一行一个正整数\(n\),表示该二叉树的叶节点的个数;
下面若干行,每行一个数\(p\):
如果\(p=0\),表示这个节点不是叶节点,递归地向下读入其左孩子和右孩子的信息;
如果\(p \neq 0\) ,表示这个节点是叶节点,权值为\(p\) 。
本来想学一下启发式合并的,结果被一个很神奇的错误卡了很久。。
启发式合并的复杂度没怎么学会,只是大致知道权值线段树的合并和相同的节点数量成正相关,反正把只有一条链的权值线段树都合起来的复杂度是\(O(nlogn)\)的
不过在最后出现了一个神奇的错误
10分:
int dfs()
{
scanf("%d",&k);
if(k) return build(1,n,k);
s1=s2=0;
int now=Merge(dfs(),dfs());
ans+=min(s1,s2);
return now;
}
100分:
int dfs()
{
scanf("%d",&k);
if(k) return build(1,n,k);
int now=Merge(dfs(),dfs());
ans+=min(s1,s2);
s1=s2=0;
return now;
}
注意递归时赋初值该在什么时候搞
Code:
#include <cstdio>
#define ll long long
#define ls ch[now][0]
#define rs ch[now][1]
const int N=200000;
ll min(ll x,ll y){return x<y?x:y;}
int ch[N*25][2],n,k,tot;
ll sum[N*25],ans,s1,s2;
int build(int l,int r,int pos)
{
int now=++tot;
sum[now]++;
if(l==r) return now;
int mid=l+r>>1;
if(pos<=mid)
ls=build(l,mid,pos);
else
rs=build(mid+1,r,pos);
return now;
}
int Merge(int x,int y)
{
if(!x||!y) return x+y;
sum[x]+=sum[y];
s1+=sum[ch[x][1]]*sum[ch[y][0]];
s2+=sum[ch[x][0]]*sum[ch[y][1]];
ch[x][0]=Merge(ch[x][0],ch[y][0]);
ch[x][1]=Merge(ch[x][1],ch[y][1]);
return x;
}
int dfs()
{
scanf("%d",&k);
if(k) return build(1,n,k);
int now=Merge(dfs(),dfs());
ans+=min(s1,s2);
s1=s2=0;
return now;
}
int main()
{
scanf("%d",&n);
dfs();
printf("%lld\n",ans);
return 0;
}
2018.7.30
洛谷 P3521 [POI2011]ROT-Tree Rotations 解题报告的更多相关文章
- 洛谷 P1501 [国家集训队]Tree II 解题报告
P1501 [国家集训队]Tree II 题目描述 一棵\(n\)个点的树,每个点的初始权值为\(1\).对于这棵树有\(q\)个操作,每个操作为以下四种操作之一: + u v c:将\(u\)到\( ...
- 洛谷 P2323 [HNOI2006]公路修建问题 解题报告
P2323 [HNOI2006]公路修建问题 题目描述 输入输出格式 输入格式: 在实际评测时,将只会有m-1行公路 输出格式: 思路: 二分答案 然后把每条能加的大边都加上,然后加小边 但在洛谷的题 ...
- [洛谷P3521][POI2011]ROT-Tree Rotations
题目大意:给一棵$n(n\leqslant2\times10^5)$个叶子的二叉树,可以交换每个点的左右子树,要求前序遍历叶子的逆序对最少.输出最少的逆序对个数 题解:线段树合并,对于每个节点求出交换 ...
- 洛谷P3521 [POI2011]ROT-Tree Rotation [线段树合并]
题目传送门 Tree Rotation 题目描述 Byteasar the gardener is growing a rare tree called Rotatus Informatikus. I ...
- 洛谷 P1852 [国家集训队]跳跳棋 解题报告
P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...
- 洛谷 P3299 [SDOI2013]保护出题人 解题报告
P3299 [SDOI2013]保护出题人 题目描述 出题人铭铭认为给SDOI2012出题太可怕了,因为总要被骂,于是他又给SDOI2013出题了. 参加SDOI2012的小朋友们释放出大量的僵尸,企 ...
- 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告
P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...
- 洛谷 P2463 [SDOI2008]Sandy的卡片 解题报告
P2463 [SDOI2008]Sandy的卡片 题意 给\(n(\le 1000)\)串,定义两个串相等为"长度相同,且一个串每个数加某个数与另一个串完全相同",求所有串的最长公 ...
- 洛谷 P2774 方格取数问题 解题报告
P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...
随机推荐
- Putty远程连接Ubuntu14.04
步骤一.在ubuntu系统中安装ssh,可使用如下的命令进行安装: sudo apt-get install openssh-server 步骤二.为了保险起见,安装完成后重启一下ssh服务,命令如下 ...
- SSH项目中的困惑之一
1.request.getContextPath()详解 <%=request.getContextPath()%>是为了解决相对路径的问题,可返回站点的根路径. 但不用也可以,比如< ...
- Win10系统XWware虚拟机安装Linux系统(Ubuntu)最新版教程
XWware虚拟机安装Linux系统(Ubuntu)教程 一.下载并安装VMware虚拟机 借助VMware Workstation Pro, 我们可以在同一台Windows或Linux PC上同时运 ...
- python学习笔记04 --------------基本运算符
1.算数运算 + 加 - 减 * 乘 / 除 % 取模(先做除法,然后返回余数) ** 乘方(幂运算) // 取整(相除,然后返回商的整数部分) 2.比较运算(返回布尔值) == ...
- 【swiper】 滑块组件说明
swiper 滑块视图容器,其原型如下: <swiper indicator-dots="[Boolean]" indicator-color="[Color]&q ...
- 【RandomString】- 随机字符串
RandomString 随机字符串的用法
- 给eclipse安装color-theme插件
给eclipse安装color-theme插件 2016年03月22日 19:16:01 ming_love 阅读数:5193 标签: Eclipse Color Theme 更多 个人分类: jav ...
- Java基础:关键字final,static
一 . final 含义:adj.最后的,最终的; 决定性的; 不可更改的.在Java中是一个保留的关键字,可以声明成员变量.方法.类以及本地变量.一旦你将引用声明作final,你将不能改变这个引用了 ...
- beego 笔记
1.开发文档 https://beego.me/docs/intro/ 2.bee run projectname demo controller package autoscaler import ...
- 【转】使用CNPM搭建私有NPM
最近的Node项目中因为数据模型等问题,需要有一个对各个模块进行统一的管理,如果把私有的模型publish到公共的npm不太合适,所以决定使用cnpm搭建一个私有的npm,同时也可以对项目常用的npm ...