Description

Farmer John is at the market to purchase supplies for his farm. He has in his pocket K coins (1 <= K <= 16), each with value in the range 1..100,000,000. FJ would like to make a sequence of N purchases (1 <= N <= 100,000), where the ith purchase costs c(i) units of money (1 <= c(i) <= 10,000). As he makes this sequence of purchases, he can periodically stop and pay, with a single coin, for all the purchases made since his last payment (of course, the single coin he uses must be large enough to pay for all of these). Unfortunately, the vendors at the market are completely out of change, so whenever FJ uses a coin that is larger than the amount of money he owes, he sadly receives no changes in return! Please compute the maximum amount of money FJ can end up with after making his N purchases in sequence. Output -1 if it is impossible for FJ to make all of his purchases.

K个硬币,要买N个物品。

给定买的顺序,即按顺序必须是一路买过去,当选定买的东西物品序列后,付出钱后,货主是不会找零钱的。现希望买完所需要的东西后,留下的钱越多越好,如果不能完成购买任务,输出-1

Input

Line 1: Two integers, K and N.

* Lines 2..1+K: Each line contains the amount of money of one of FJ's coins.

* Lines 2+K..1+N+K: These N lines contain the costs of FJ's intended purchases.

Output

* Line 1: The maximum amount of money FJ can end up with, or -1 if FJ cannot complete all of his purchases.

Sample Input

3 6
12
15
10
6
3
3
2
3
7

INPUT DETAILS: FJ has 3 coins of values 12, 15, and 10. He must make purchases in sequence of value 6, 3, 3, 2, 3, and 7.

Sample Output

12
OUTPUT DETAILS: FJ spends his 10-unit coin on the first two purchases, then the 15-unit coin on the remaining purchases. This leaves him with the 12-unit coin.

Solution

首先一看数据范围状压没跑了
那么复杂度一定带一个2^16也就是六万多
那DP肯定不能和N搞了……
所以我们就和K搞DP好了
这样就很容易定义f[i][S]表示当前用了i个硬币,硬币使用状态为S的时候最多买到哪个商品
再预处理pay[i][j]表示硬币i从j商品开始买能买到哪里
DP式子就很好想喽。
一开始没注意-1WA了一发……
话说我这算不算面向数据范围编程

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#define N (100000+10)
using namespace std; int pay[][N],a[N],c[N],num[N],f[][N];
int n,m; int main()
{
scanf("%d%d",&n,&m);
for (int i=; i<=n; ++i)
scanf("%d",&a[i]);
for (int i=; i<=m; ++i)
scanf("%d",&c[i]);
for (int i=; i<=(<<n)-; ++i)
{
int x=i,cnt=;
while (x){if (x&) cnt++; x>>=;}
num[i]=cnt;
} int p=;
for (int i=; i<=n; ++i)
{
int sum=,l=;
for (int j=; j<=m; ++j)
{
sum-=c[j-];
while (sum+c[l]<=a[i] && l<=m)
sum+=c[l++];
pay[i][j]=l-;
}
} for (int i=; i<=n; ++i)//当前硬币
for (int j=; j<=(<<n)-; ++j)//上一个的状态
if (num[j]==i-)
for (int k=; k<=n; ++k)
if ((j|(<<k-))!=j)
f[i][j|(<<k-)]=max(f[i][j|(<<k-)],pay[k][f[i-][j]+]); int ans=-;
for (int i=; i<=n; ++i)
for (int j=; j<=(<<n)-; ++j)
if (f[i][j]==m)
{
int sum=;
for (int k=; k<=n; ++k)
if (!(j&(<<k-)))
sum+=a[k];
ans=max(ans,sum);
}
printf("%d",ans);
}

BZOJ3312:[USACO]No Change(状压DP)的更多相关文章

  1. 【BZOJ3312】[Usaco2013 Nov]No Change 状压DP+二分

    [BZOJ3312][Usaco2013 Nov]No Change Description Farmer John is at the market to purchase supplies for ...

  2. LG3092 「USACO2013NOV」No Change 状压DP

    问题描述 https://www.luogu.org/problem/P3092 题解 观察到 \(k \le 16\) ,自然想到对 \(k\) 状压. 设 \(opt[i]\) 代表使用硬币状况为 ...

  3. P3092 [USACO13NOV]没有找零No Change 状压dp

    这个题有点意思,其实不是特别难,但是不太好想...中间用二分找最大的可买长度就行了. 题干: 题目描述 Farmer John <= K <= ), each with value .., ...

  4. [BZOJ3312][USACO]不找零(状压DP)

    Description 约翰带着 N 头奶牛在超市买东西,现在他们正在排队付钱,排在第 i 个位置的奶牛需要支付 Ci元.今天说好所有东西都是约翰请客的,但直到付账的时候,约翰才意识到自己没带钱,身上 ...

  5. [luoguP3092] [USACO13NOV]没有找零No Change(状压DP + 二分)

    传送门 先通过二分预处理出来,每个硬币在每个商品处最多能往后买多少个商品 直接状压DP即可 f[i]就为,所有比状态i少一个硬币j的状态所能达到的最远距离,在加上硬币j在当前位置所能达到的距离,所有的 ...

  6. poj3254 Corn Fields (状压DP)

    http://poj.org/problem?id=3254 Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissio ...

  7. HDUOJ Clear All of Them I 状压DP

    Clear All of Them I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 122768/62768 K (Java/Oth ...

  8. 状压DP总结

    状态压缩就是将一行的状态压成一个二进制数,这个数的二进制形式反映了这一行的情况 比如0100111的意义为:这一排的第一个数没被使用,第二个被占用了,第三四个没被占用,第五六七个被占用 我们知道位运算 ...

  9. 【思维题 状压dp】APC001F - XOR Tree

    可能算是道中规中矩的套路题吧…… Time limit : 2sec / Memory limit : 256MB Problem Statement You are given a tree wit ...

随机推荐

  1. 移动端rem适配屏幕

    九月已成历史,十月如期而至...可能是九月工作比较清闲,周记就没怎么写,十月决不能这么堕落,立贴为证,至少保证5篇博客!!!如果没学到什么新知识,就对以往的那些工作中常用到的知识点做个总结...话不多 ...

  2. 【关于使用SpringJUnit4ClassRunner单元测试报错问题】

    今天单元测试如下的代码的时候发现项目老是报错: package com.yhb.jsxn.service; import java.text.SimpleDateFormat; import java ...

  3. 获取URL中某个参数的值

    JS代码: function getQueryString(name){ var reg = new RegExp("(^|&)" + name + "=([^& ...

  4. Asp.net MVC5系列——第一个项目

    转自http://www.cnblogs.com/wolf-sun/p/3888160.html 概述 在这一部分我们添加一个新的控制器HelloWorldController类,以便使用视图来向客户 ...

  5. 前端小结(4)---- 页面加载loding....

    /*正在加载*/ function showLoading(elem) { var html = '<div class="loading"><div id=&q ...

  6. 【转】mouseover和mouseenter的区别

    一.当绑定着两个事件的元素里面没有子元素的时候,这两个事件的触发效果是一致的: x=0; y=0; $(document).ready(function(){ $("div.over&quo ...

  7. 修改vue的配置项支持生产环境下二级目录访问的方法

    本文主要记录如何配置vue的打包文件配置项,使打包后的文件可以支持二级目录的访问. 1.常规打包 在实际的项目中,我们通常都使用 npm run build 直接打包文件后丢到服务器上访问 打包后的文 ...

  8. sprintf详解

    原文:http://www.cnblogs.com/wqlblogger/archive/2007/01/09/615525.html 转摘声明:选自<CSDN 社区电子杂志——C/C++杂志& ...

  9. webstorm出现黑色块光标

    取消掉此项对勾即可

  10. 工作总结:mvc分层架构

    pojo:plain ordinary java object 简单无规则java对象,我个人觉得它和其他不是一个层面上的东西,VO和PO应该都属于它 po:persistant object 持久对 ...