PICK定理模板
S=I+O/2-1
S为多边形面积,I多边形内部的格点,O是多边形边上的格点
其中边上格点求法:
假设两个点A(x1,y1),B(x2,y2)
线段AB间格点个数为gcd(abs(x1-x2),abs(y1-y2))-1
特判x1-x2==0 或者 y1-y2==0,则覆盖的点数为 y2-y1 或 x2-x1
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 5106 | Accepted: 2210 |
Description
A lattice point is an ordered pair (x, y) where x and y are both integers. Given the coordinates of the vertices of a triangle (which happen to be lattice points), you are to count the number of lattice points which lie completely inside of the triangle (points on the edges or vertices of the triangle do not count).
Input
The input test file will contain multiple test cases. Each input test case consists of six integers x1, y1, x2, y2, x3, and y3, where (x1, y1), (x2, y2), and (x3, y3) are the coordinates of vertices of the triangle. All triangles in the input will be non-degenerate (will have positive area), and −15000 ≤ x1, y1, x2, y2, x3, y3 ≤ 15000. The end-of-file is marked by a test case with x1 = y1 = x2 = y2 = x3 = y3 = 0 and should not be processed.
Output
For each input case, the program should print the number of internal lattice points on a single line.
Sample Input
0 0 1 0 0 1
0 0 5 0 0 5
0 0 0 0 0 0
Sample Output
0
6
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std; int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
} int main()
{
int sum,area;
int x1,Y1,x2,y2,x3,y3;
while(scanf("%d%d%d%d%d%d",&x1,&Y1,&x2,&y2,&x3,&y3),x1||Y1||x2||y2||x3||y3)
{
area=abs(x1*y2+x2*y3+x3*Y1-x1*y3-x2*Y1-x3*y2)/;
sum=gcd(abs(x1-x2),abs(Y1-y2))+gcd(abs(x2-x3),abs(y2-y3))+gcd(abs(x3-x1),abs(y3-Y1));
printf("%d\n",area+-sum/);
}
return ;
}
POJ 1265
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 5112 | Accepted: 2291 |
Description
Figure 1: Example area. You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that simple formula for you, so your first task is to find the formula yourself. Input
Output
Sample Input
2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3
Sample Output
Scenario #1:
0 4 1.0 Scenario #2:
12 16 19.0
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
using namespace std; int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
}
int main()
{
__int64 ans;
int T,iCase=,n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
int sx=,sy=,tx,ty;
int on=,ans=;
while(n--)
{
scanf("%d%d",&tx,&ty);
int newx=sx+tx;
int newy=sy+ty;
ans+=sx*newy-sy*newx;
sx=newx;
sy=newy;
on+=gcd(abs(tx),abs(ty));
}
int in=(ans-on+)/;
printf("Scenario #%d:\n%d %d %.1f\n\n",iCase++,in,on,ans/2.0);
}
return ;
}
PICK定理模板的更多相关文章
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
- HDU 3775 Chain Code ——(Pick定理)
Pick定理运用在整点围城的面积,有以下公式:S围 = S内(线内部的整点个数)+ S线(线上整点的个数)/2 - 1.在这题上,我们可以用叉乘计算S围,题意要求的答案应该是S内+S线.那么我们进行推 ...
- 【POJ】2954 Triangle(pick定理)
http://poj.org/problem?id=2954 表示我交了20+次... 为什么呢?因为多组数据我是这样判断的:da=sum{a[i].x+a[i].y},然后!da就表示没有数据了QA ...
- UVa 10088 - Trees on My Island (pick定理)
样例: 输入:123 16 39 28 49 69 98 96 55 84 43 51 3121000 10002000 10004000 20006000 10008000 30008000 800 ...
- Area(Pick定理POJ1256)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5429 Accepted: 2436 Description ...
- poj 2954 Triangle(Pick定理)
链接:http://poj.org/problem?id=2954 Triangle Time Limit: 1000MS Memory Limit: 65536K Total Submissio ...
- poj 1265 Area (Pick定理+求面积)
链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- poj1265Area(pick定理)
链接 Pick定理是说,在一个平面直角坐标系内,如果一个多边形的顶点全都在格点上,那么这个图形的面积恰好就等于边界上经过的格点数的一半加上内部所含格点数再减一. pick定理的一些应用 题意不好懂, ...
- pick定理:面积=内部整数点数+边上整数点数/2-1
//pick定理:面积=内部整数点数+边上整数点数/2-1 // POJ 2954 #include <iostream> #include <cstdio> #include ...
随机推荐
- wiegand/韦根
韦根 参考: 1.wiegand/韦根驱动
- 调起MT096的配置过程
FTP::cips\/var/cics_regions/RGCIPS/database/PD/PD.RGCIPS|PD.auto 更加新的PD号(其中的路径指向新的程序ibmp),并修改FTP::ci ...
- 模板:函数memset
需要的头文件 <memory.h> or <string.h> memset 函数介绍 void *memset(void *s, int ch, size_t n); 函 ...
- SSD论文优秀句子
1. Nonvolatile memory(e.g., Phase Change Memory) blurs the boundary between memory and storage and i ...
- 【仿携程JQuery日期价格表】
今天比较闲所以就花点时间又写了点东西. 相信这种价格表大家不会陌生 现在我就模仿它做一个简单版本的.效果如下 首先需要两个时间控件,我这里用的是HTML5里面的时间控件,这个没限制喜欢用什么就用什么 ...
- Python3 多进程和多线程
Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊.普通的函数调用,调用一次,返回一次,但是fork()调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为 ...
- Linux oracle数据库自动备份自动压缩脚本代码
Linux oracle数据库备份完成后可以自动压缩脚本代码. 复制代码代码如下: #!/bin/bash #backup.sh #edit: www.jbxue.com ##系统名称 sysname ...
- Python+Bottle+Sina SAE快速构建网站
Bottle是新生一代Python框架的代表,利用Bottle构建网站将十分简单. Sina SAE是国内较出名的云平台之一,十分适用于个人网站的开发或创业公司网站开发. 下面将介绍如果通过Pytho ...
- HDFS文件读写流程 (转)
文件读取的过程如下: 使用HDFS提供的客户端开发库Client,向远程的Namenode发起RPC请求: Namenode会视情况返回文件的部分或者全部block列表,对于每个block,Namen ...
- linux下修改IP信息
在Linux的系统下如何才能修改IP信息 以前总是用ifconfig修改,重启后总是得重做.如果修改配置文件,就不用那么麻烦了- A.修改ip地址 即时生效: # ifconfig eth0 192. ...