Writing analyzers

There are times when you would like to analyze text in a bespoke fashion, either by configuring how one of Elasticsearch’s built-in analyzers works, or by combining analysis components together to build a custom analyzer.

The analysis chain

An analyzer is built of three components:

  • 0 or more character filters
  • exactly 1 tokenizer
  • 0 or more token filters

Check out the Elasticsearch documentation on the Anatomy of an analyzer to understand more.

Specifying an analyzer on a field mapping

An analyzer can be specified on a text datatype field mapping when creating a new field on a type, usually when creating the type mapping at index creation time, but also when adding a new field using the Put Mapping API.

Although you can add new types to an index, or add new fields to a type, you can’t add new analyzers or make changes to existing fields. If you were to do so, the data that has already been indexed would be incorrect and your searches would no longer work as expected.

When you need to make changes to existing fields, you should look at reindexing your data with the Reindex API

Here’s a simple example that specifies that the name field in Elasticsearch, which maps to the NamePOCO property on the Project type, uses the whitespace analyzer at index time

var createIndexResponse = client.CreateIndex("my-index", c => c
.Mappings(m => m
.Map<Project>(mm => mm
.Properties(p => p
.Text(t => t
.Name(n => n.Name)
.Analyzer("whitespace")
)
)
)
)
);

Configuring a built-in analyzer

Several built-in analyzers can be configured to alter their behaviour. For example, the standardanalyzer can be configured to support a list of stop words with the stop word token filter it contains.

Configuring a built-in analyzer requires creating an analyzer based on the built-in one

var createIndexResponse = client.CreateIndex("my-index", c => c
.Settings(s => s
.Analysis(a => a
.Analyzers(aa => aa
.Standard("standard_english", sa => sa
.StopWords("_english_")

                )
)
)
)
.Mappings(m => m
.Map<Project>(mm => mm
.Properties(p => p
.Text(t => t
.Name(n => n.Name)
.Analyzer("standard_english")

                )
)
)
)
);

Pre-defined list of English stopwords within Elasticsearch

Use the standard_english analyzer configured

{
"settings": {
"analysis": {
"analyzer": {
"standard_english": {
"type": "standard",
"stopwords": [
"_english_"
]
}
}
}
},
"mappings": {
"project": {
"properties": {
"name": {
"type": "text",
"analyzer": "standard_english"
}
}
}
}
}

Creating a custom analyzer

A custom analyzer can be composed when none of the built-in analyzers fit your needs. A custom analyzer is built from the components that you saw in the analysis chain and a position increment gap, that determines the size of gap that Elasticsearch should insert between array elements, when a field can hold multiple values e.g. a List<string> POCO property.

For this example, imagine we are indexing programming questions, where the question content is HTML and contains source code

public class Question
{
public int Id { get; set; }
public DateTimeOffset CreationDate { get; set; }
public int Score { get; set; }
public string Body { get; set; }
}

Based on our domain knowledge of programming languages, we would like to be able to search questions that contain "C#", but using the standard analyzer, "C#" will be analyzed and produce the token "c". This won’t work for our use case as there will be no way to distinguish questions about "C#" from questions about another popular programming language, "C".

We can solve our issue with a custom analyzer

var createIndexResponse = client.CreateIndex("questions", c => c
.Settings(s => s
.Analysis(a => a
.CharFilters(cf => cf
.Mapping("programming_language", mca => mca
.Mappings(new []
{
"c# => csharp",
"C# => Csharp"
})
)
)
.Analyzers(an => an
.Custom("question", ca => ca
.CharFilters("html_strip", "programming_language")
.Tokenizer("standard")
.Filters("standard", "lowercase", "stop")
)
)
)
)
.Mappings(m => m
.Map<Question>(mm => mm
.AutoMap()
.Properties(p => p
.Text(t => t
.Name(n => n.Body)
.Analyzer("question")
)
)
)
)
);

Our custom question analyzer will apply the following analysis to a question body

  1. strip HTML tags
  2. map both C# and c# to "CSharp" and "csharp", respectively (so the # is not stripped by the tokenizer)
  3. tokenize using the standard tokenizer
  4. filter tokens with the standard token filter
  5. lowercase tokens
  6. remove stop word tokens

full text query will also apply the same analysis to the query input against the question body at search time, meaning when someone searches including the input "C#", it will also be analyzed and produce the token "csharp", matching a question body that contains "C#" (as well as "csharp" and case invariants), because the search time analysis applied is the same as the index time analysis.

Index and Search time analysis

With the previous example, we probably don’t want to apply the same analysis to the query input of a full text query against a question body; we know for our problem domain that a query input is not going to contain HTML tags, so we would like to apply different analysis at search time.

An analyzer can be specified when creating the field mapping to use at search time, in addition to an analyzer to use at query time

var createIndexResponse = client.CreateIndex("questions", c => c
.Settings(s => s
.Analysis(a => a
.CharFilters(cf => cf
.Mapping("programming_language", mca => mca
.Mappings(new[]
{
"c# => csharp",
"C# => Csharp"
})
)
)
.Analyzers(an => an
.Custom("index_question", ca => ca

                    .CharFilters("html_strip", "programming_language")
.Tokenizer("standard")
.Filters("standard", "lowercase", "stop")
)
.Custom("search_question", ca => ca

                    .CharFilters("programming_language")
.Tokenizer("standard")
.Filters("standard", "lowercase", "stop")
)
)
)
)
.Mappings(m => m
.Map<Question>(mm => mm
.AutoMap()
.Properties(p => p
.Text(t => t
.Name(n => n.Body)
.Analyzer("index_question")
.SearchAnalyzer("search_question")
)
)
)
)
);

Use an analyzer at index time that strips HTML tags

Use an analyzer at search time that does not strip HTML tags

With this in place, the text of a question body will be analyzed with the index_question analyzer at index time and the input to a full text query on the question body field will be analyzed with the search_question analyzer that does not use the html_strip character filter.

A Search analyzer can also be specified per query i.e. use a different analyzer for a particular request from the one specified in the mapping. This can be useful when iterating on and improving your search strategy.

Take a look at the analyzer documentation for more details around where analyzers can be specified and the precedence for a given request.

Writing analyzers的更多相关文章

  1. Elasticsearch搜索资料汇总

    Elasticsearch 简介 Elasticsearch(ES)是一个基于Lucene 构建的开源分布式搜索分析引擎,可以近实时的索引.检索数据.具备高可靠.易使用.社区活跃等特点,在全文检索.日 ...

  2. 4.3 Writing a Grammar

    4.3 Writing a Grammar Grammars are capable of describing most, but not all, of the syntax of program ...

  3. Spring Enable annotation – writing a custom Enable annotation

    原文地址:https://www.javacodegeeks.com/2015/04/spring-enable-annotation-writing-a-custom-enable-annotati ...

  4. Writing to a MySQL database from SSIS

    Writing to a MySQL database from SSIS 出处  :  http://blogs.msdn.com/b/mattm/archive/2009/01/07/writin ...

  5. Writing Clean Code 读后感

    最近花了一些时间看了这本书,书名是 <Writing Clean Code ── Microsoft Techniques for Developing Bug-free C Programs& ...

  6. JMeter遇到的问题一:Error writing to server(转)

    Java.io.IOException: Error writing to server异常:我测试500个并发时,系统没有问题:可当我把线程数加到800时,就出现错误了,在"查看结果树&q ...

  7. java.io.WriteAbortedException: writing aborted; java.io.NotSerializableException

    问题描述: 严重: IOException while loading persisted sessions: java.io.WriteAbortedException: writing abort ...

  8. Markdown syntax guide and writing on MWeb

    Philosophy Markdown is intended to be as easy-to-read and easy-to-write as is feasible.Readability, ...

  9. 《Writing Idiomatic Python》前两部分的中文翻译

    汇总了一下这本小书前两部分的内容: 翻译<Writing Idiomatic Python>(一):if语句.for循环 翻译<Writing Idiomatic Python> ...

随机推荐

  1. Spring Boot 、mybatis 、swagger 和 c3p0 整合

    文件路径如下 添加依赖 <?xml version="1.0" encoding="UTF-8"?> <project xmlns=" ...

  2. php通过反射执行某方法

    简单记录下通过反射来获取某方法的参数,然后利用php内置函数类执行此方法 一个简单的test类 class test { //2个参数默认值 public function b($name='lemo ...

  3. rtx自定义面板不更新

    服务器和客户端自定义面的文件分别在下列xml中. 程序员的基础教程:菜鸟程序员

  4. 好久没做.Net开发了,今天配置IIS和.Net Framework 4.0遇到点问题

    装了64位的Win7后,装了VS再装IIS,结果IIS里面有.NET4.0,但是程序始终是跑不起来,最后觉得可能是因为4.0没有注册到IIS,因为之前在win2003中有遇到类似的情况.最终成功解决, ...

  5. Python打开文件open()的注意事项

    刚刚用open(fileName)来打开txt格式的文件,总是出现错误,总是找不到文件读取的内容,后来才发现是open()在使用过程中自动关闭了.这里介绍另种方法解决这个问题. 第一种方法. with ...

  6. [C#] Delegate, Multicase delegate, Event

    声明:这篇博客翻译自:https://www.codeproject.com/Articles/1061085/Delegates-Multicast-delegates-and-Events-in- ...

  7. web应用安全权威指南(文摘)

    第1章 什么是web应用的安全隐患 第3章 Web安全基础,HTTP,会话管理,同源策略 content_length 字节数 content_type mime类型 百分号编码 referer :请 ...

  8. LinUX系统ThinkPHP5链接MsSQL数据库的pdo_dblib扩展

    LinUX(centOS6.8)系统ThinkPHP5链接MsSQL数据库的pdo_dblib扩展第一步 下载并安装freetds-current.tar.gz下载地址如下ftp://ftp.free ...

  9. HRBUST1200 装修 2017-03-06 15:41 94人阅读 评论(0) 收藏

    装修 hero为了能顺利娶princess ,花了血本,买了个房子,现在决定装修.房子的长度为n米,宽度为3米,现在我们有2种地砖,规格分别是1米×1米,2米×2米,如果要为该教室铺设地砖,请问有几种 ...

  10. Spring 通知

    1. AspectJ 支持 5 种类型的通知注解:  @Before: 前置通知, 在方法执行之前执行 @After: 后置通知, 在方法执行之后执行 @AfterRunning: 返回通知, 在方法 ...