Writing analyzers
There are times when you would like to analyze text in a bespoke fashion, either by configuring how one of Elasticsearch’s built-in analyzers works, or by combining analysis components together to build a custom analyzer.
The analysis chain
An analyzer is built of three components:
- 0 or more character filters
- exactly 1 tokenizer
- 0 or more token filters

Check out the Elasticsearch documentation on the Anatomy of an analyzer to understand more.
Specifying an analyzer on a field mapping
An analyzer can be specified on a text datatype field mapping when creating a new field on a type, usually when creating the type mapping at index creation time, but also when adding a new field using the Put Mapping API.
Although you can add new types to an index, or add new fields to a type, you can’t add new analyzers or make changes to existing fields. If you were to do so, the data that has already been indexed would be incorrect and your searches would no longer work as expected.
When you need to make changes to existing fields, you should look at reindexing your data with the Reindex API
Here’s a simple example that specifies that the name field in Elasticsearch, which maps to the NamePOCO property on the Project type, uses the whitespace analyzer at index time
var createIndexResponse = client.CreateIndex("my-index", c => c
.Mappings(m => m
.Map<Project>(mm => mm
.Properties(p => p
.Text(t => t
.Name(n => n.Name)
.Analyzer("whitespace")
)
)
)
)
);
Configuring a built-in analyzer
Several built-in analyzers can be configured to alter their behaviour. For example, the standardanalyzer can be configured to support a list of stop words with the stop word token filter it contains.
Configuring a built-in analyzer requires creating an analyzer based on the built-in one
var createIndexResponse = client.CreateIndex("my-index", c => c
.Settings(s => s
.Analysis(a => a
.Analyzers(aa => aa
.Standard("standard_english", sa => sa
.StopWords("_english_")
![]()
)
)
)
)
.Mappings(m => m
.Map<Project>(mm => mm
.Properties(p => p
.Text(t => t
.Name(n => n.Name)
.Analyzer("standard_english")
![]()
)
)
)
)
);
|
|
Pre-defined list of English stopwords within Elasticsearch |
|
|
Use the |
{
"settings": {
"analysis": {
"analyzer": {
"standard_english": {
"type": "standard",
"stopwords": [
"_english_"
]
}
}
}
},
"mappings": {
"project": {
"properties": {
"name": {
"type": "text",
"analyzer": "standard_english"
}
}
}
}
}
Creating a custom analyzer
A custom analyzer can be composed when none of the built-in analyzers fit your needs. A custom analyzer is built from the components that you saw in the analysis chain and a position increment gap, that determines the size of gap that Elasticsearch should insert between array elements, when a field can hold multiple values e.g. a List<string> POCO property.
For this example, imagine we are indexing programming questions, where the question content is HTML and contains source code
public class Question
{
public int Id { get; set; }
public DateTimeOffset CreationDate { get; set; }
public int Score { get; set; }
public string Body { get; set; }
}
Based on our domain knowledge of programming languages, we would like to be able to search questions that contain "C#", but using the standard analyzer, "C#" will be analyzed and produce the token "c". This won’t work for our use case as there will be no way to distinguish questions about "C#" from questions about another popular programming language, "C".
We can solve our issue with a custom analyzer
var createIndexResponse = client.CreateIndex("questions", c => c
.Settings(s => s
.Analysis(a => a
.CharFilters(cf => cf
.Mapping("programming_language", mca => mca
.Mappings(new []
{
"c# => csharp",
"C# => Csharp"
})
)
)
.Analyzers(an => an
.Custom("question", ca => ca
.CharFilters("html_strip", "programming_language")
.Tokenizer("standard")
.Filters("standard", "lowercase", "stop")
)
)
)
)
.Mappings(m => m
.Map<Question>(mm => mm
.AutoMap()
.Properties(p => p
.Text(t => t
.Name(n => n.Body)
.Analyzer("question")
)
)
)
)
);
Our custom question analyzer will apply the following analysis to a question body
- strip HTML tags
- map both
C#andc#to"CSharp"and"csharp", respectively (so the#is not stripped by the tokenizer) - tokenize using the standard tokenizer
- filter tokens with the standard token filter
- lowercase tokens
- remove stop word tokens
A full text query will also apply the same analysis to the query input against the question body at search time, meaning when someone searches including the input "C#", it will also be analyzed and produce the token "csharp", matching a question body that contains "C#" (as well as "csharp" and case invariants), because the search time analysis applied is the same as the index time analysis.
Index and Search time analysis
With the previous example, we probably don’t want to apply the same analysis to the query input of a full text query against a question body; we know for our problem domain that a query input is not going to contain HTML tags, so we would like to apply different analysis at search time.
An analyzer can be specified when creating the field mapping to use at search time, in addition to an analyzer to use at query time
var createIndexResponse = client.CreateIndex("questions", c => c
.Settings(s => s
.Analysis(a => a
.CharFilters(cf => cf
.Mapping("programming_language", mca => mca
.Mappings(new[]
{
"c# => csharp",
"C# => Csharp"
})
)
)
.Analyzers(an => an
.Custom("index_question", ca => ca
![]()
.CharFilters("html_strip", "programming_language")
.Tokenizer("standard")
.Filters("standard", "lowercase", "stop")
)
.Custom("search_question", ca => ca
![]()
.CharFilters("programming_language")
.Tokenizer("standard")
.Filters("standard", "lowercase", "stop")
)
)
)
)
.Mappings(m => m
.Map<Question>(mm => mm
.AutoMap()
.Properties(p => p
.Text(t => t
.Name(n => n.Body)
.Analyzer("index_question")
.SearchAnalyzer("search_question")
)
)
)
)
);
|
|
Use an analyzer at index time that strips HTML tags |
|
|
Use an analyzer at search time that does not strip HTML tags |
With this in place, the text of a question body will be analyzed with the index_question analyzer at index time and the input to a full text query on the question body field will be analyzed with the search_question analyzer that does not use the html_strip character filter.
A Search analyzer can also be specified per query i.e. use a different analyzer for a particular request from the one specified in the mapping. This can be useful when iterating on and improving your search strategy.
Take a look at the analyzer documentation for more details around where analyzers can be specified and the precedence for a given request.
Writing analyzers的更多相关文章
- Elasticsearch搜索资料汇总
Elasticsearch 简介 Elasticsearch(ES)是一个基于Lucene 构建的开源分布式搜索分析引擎,可以近实时的索引.检索数据.具备高可靠.易使用.社区活跃等特点,在全文检索.日 ...
- 4.3 Writing a Grammar
4.3 Writing a Grammar Grammars are capable of describing most, but not all, of the syntax of program ...
- Spring Enable annotation – writing a custom Enable annotation
原文地址:https://www.javacodegeeks.com/2015/04/spring-enable-annotation-writing-a-custom-enable-annotati ...
- Writing to a MySQL database from SSIS
Writing to a MySQL database from SSIS 出处 : http://blogs.msdn.com/b/mattm/archive/2009/01/07/writin ...
- Writing Clean Code 读后感
最近花了一些时间看了这本书,书名是 <Writing Clean Code ── Microsoft Techniques for Developing Bug-free C Programs& ...
- JMeter遇到的问题一:Error writing to server(转)
Java.io.IOException: Error writing to server异常:我测试500个并发时,系统没有问题:可当我把线程数加到800时,就出现错误了,在"查看结果树&q ...
- java.io.WriteAbortedException: writing aborted; java.io.NotSerializableException
问题描述: 严重: IOException while loading persisted sessions: java.io.WriteAbortedException: writing abort ...
- Markdown syntax guide and writing on MWeb
Philosophy Markdown is intended to be as easy-to-read and easy-to-write as is feasible.Readability, ...
- 《Writing Idiomatic Python》前两部分的中文翻译
汇总了一下这本小书前两部分的内容: 翻译<Writing Idiomatic Python>(一):if语句.for循环 翻译<Writing Idiomatic Python> ...
随机推荐
- tomcat启动一闪而过,调试tomcat
参考地址:https://blog.csdn.net/baidu_32739019/article/details/64155136
- 【poj3254】Corn Fields 状态压缩dp
AC通道:http://vjudge.net/problem/POJ-3254 [题目大意] 农夫约翰购买了一处肥沃的矩形牧场,分成M*N(1<=M<=12; 1<=N<=12 ...
- linux 一个网卡配置多个IP
在Redhat系列(redhat,Fedora,Centos,Gentoo)中的实现方法如下: 1.单网卡绑定多IP在Redhat系列中的实现方法 假设需要绑定多IP的网卡是eth0,请在/etc/s ...
- [Android] 对ImageView设置属性scaleType为FIT_START,如何去掉多余空白
当对ImageView设置了属性scaleType为FIT_START时,可以通过调用ImageView的setAdjustViewBounds(true). 即: imageView.setScal ...
- php 访问用友u8数据
<?php namespace app\api\controller; use think\Controller; use think\Db; use think\Log; /** * desc ...
- 20155318 2016-2017-2 《Java程序设计》第九学习总结
20155318 2016-2017-2 <Java程序设计>第九学习总结 教材学习内容总结 学习目标 了解JDBC架构 掌握JDBC架构 掌握反射与ClassLoader 了解自定义泛型 ...
- javascript编码规范[原创]
一些命名规范书或js书命名规范章节,喜欢将命名规范跟语法混在一块例如: 1.使用“var”定义.初始化变量防止产生全局变量,多变量一块定义使用“,”(本身这种方式就很有争议). 2.结尾必加“;”防止 ...
- Codeforces 768A Oath of the Night's Watch 2017-02-21 22:13 39人阅读 评论(0) 收藏
A. Oath of the Night's Watch time limit per test 2 seconds memory limit per test 256 megabytes input ...
- shell 脚本 随机抽取班上学生
#!/bin/bash # jw=('王浩' '谢云生' '黄科杨' '何星宇' '张宸兵' '邓培林' '刘桃' '杨沛东' '楚齐文' '咸鱼' '杨东' '>黄庭辉' '郑少文' '师靖' ...
- Oracle EBS Export File Format
Profile Option Name Site Application Responsibility Server Server Org User Remark Export MIME type t ...