迟到的 ACX
                    时限:1s
                  内存限制:128MB
题目描述:
  今天长沙下雪了,小 ACX 在上学路上欣赏雪景,导致上学迟到,愤怒的佘总给 ACX 巨佬出了一个题目想考考
他,现在他找到你,希望你能帮帮他。
对于一张有向图,要你求图中最小环的平均值最小是多少,即若一个环经过 k 个节点,那么这个环的平均值为
环上 k 条边权的和除以 k,现要求其中的最小值。
考虑到在座的各位都是巨佬,本题需要保留小数点后面八位。
读入格式:
  第一行 2 个正整数,分别为 n 和 m ,并用一个空格隔开,分别表示图中有 n 个点 m 条边。 接下来 m 行,
每行 3 个数 i,j,w 表示有一条边(i,j)且该边的权值为 w。输入数据保证图连通,存在环且有一个点能到达其他所有
点。
输出格式:
  请输出一个实数及最小环的平均值,要求输出到小数点后 8 位。
样例输入:
4 5
1 2 5
2 3 5
3 1 5
2 4 3
4 1 3
样例输出:
3.66666667
数据范围:
100%的数据: n<=3000 m<=10000 |wi,j|<=10^7

Solution:

  看到这题一个很好的思路就是二分答案,把问题转化成判定性问题。二分答案后,将每条边的边权都减去答案Ans,那么问题就转变成了判定一幅图中是否存在负环,一个经典的做法就是用Spfa,判断一个点有没有被加入超过N次,如果有则存在负环,可是这个复杂度是O(NM)的,不能通过本题。还有一种判负环的思想就是用Dfs来跑Spfa,然后一个点重复出现时就存在负环。具体实现可以一开始把所有点的初始距离设为0,然后枚举以每个点位开头是否存在负环,因为一个负环总有一个位置开始到每个点的路径都是负数。用这种做法就可以通过本题了。

代码:

  

 /*本题不要想歪,直接二分+spfa,不多bb——by 520*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define debug printf("%d %s\n",__LINE__,__FUNCTION__)
using namespace std;
int n,m,cnt,h[];
double dis[],ans;
struct edge{
int to,net;double val;
}e[];
bool vis[],bj;
il void add(int u,int v,double w)
{
e[++cnt].net=h[u],h[u]=cnt,e[cnt].to=v,e[cnt].val=w;
}
il void spfa(int x)
{
vis[x]=;
for(int i=h[x];i;i=e[i].net){
int v=e[i].to;
if(dis[x]+e[i].val-ans<dis[v]){
if(vis[v]){ bj=;return;}
dis[v]=dis[x]+e[i].val-ans;
spfa(v);
if(bj)return;
}
}
vis[x]=;
}
il bool check()
{
memset(dis,,sizeof(dis));
memset(vis,,sizeof(vis));
for(int i=;i<=n;i++){
bj=;spfa(i);
if(bj)return ;
}
return ;
}
int main()
{
freopen("late.in","r",stdin);
freopen("late.out","w",stdout);
scanf("%d%d",&n,&m);
int u,v;double w;
for(int i=;i<=m;i++)scanf("%d%d%lf",&u,&v,&w),add(u,v,w);
double l=-,r=;
while(r-l>1e-){
ans=(l+r)/;
if(check())r=ans;
else l=ans;
}
printf("%.8lf",ans);
return ;
}

2月4日 考试——迟到的 ACX的更多相关文章

  1. 7月13日考试 题解(DFS序+期望+线段树优化建图)

    T1 sign 题目大意:给出一棵 N 个节点的树,求所有起点为叶节点的有向路径,其 上每一条边权值和的和.N<=10000 水题.考试的时候毒瘤出题人(学长orz)把读入顺序改了一下,于是很多 ...

  2. 3月28日考试 题解(二分答案+树形DP+数学(高精))

    前言:考试挂了很多分,难受…… --------------------- T1:防御 题意简述:给一条长度为$n$的序列,第$i$个数的值为$a[i]$.现让你将序列分成$m$段,且让和最小的一段尽 ...

  3. 2月24日考试——ZYYS

    LSGJ zyys 战队的 CYA 小垃圾,被各位神佬出的题目搞得心态爆炸.于是他模仿了蔡老师给了你两个整数 n 和 m .让你计算字母表大小为 m ,(即可用 m 个字母)长度为 n ,不存在长度至 ...

  4. 1月24日考试(ftp密码)

    错因分析 ♦对文件的保存不够恰当,例如第一题和第三题的题目,我是真的很愤怒,第一题在我写了一个多小时,终于样例成功.可是当我再一次打开文件时,里面只有我最开始的代码,谁可以告诉我这是为什么(我绝对保存 ...

  5. 7月15日考试 题解(链表+状压DP+思维题)

    前言:蒟蒻太弱了,全打的暴力QAQ. --------------------- T1 小Z的求和 题目大意:求$\sum\limits_{i=1}^n \sum\limits_{j=i}^n kth ...

  6. 3月21日考试 题解(数据结构+区间DP+贪心)

    前言:T3写挂了,有点难受. --------------- T1 中位数 题意简述:给你一段长度为$n$的序列,分别输出$[1,2k-1]$的中位数$(2k-1\leq n)$. --------- ...

  7. 6月28日考试 题解(GCD约分+动态规划+树状数组二维偏序)

    前言:考的一般般吧……T3暴力没打上来挺可惜的,到手的75分没了. ---------------------------------- T1 [JZOJ4745]看电影 Description 听说 ...

  8. 微软SQL Server认证最新信息(17年5月22日更新),感兴趣的进来看看哟

    之前一直有在关注微软认证的一些消息,由于最新的SQL Server认证加入了2016的相关内容,导致课程资料需要大部分更新,但是微软更新相对比较慢,并且经常改版,目前发现的最新的MCP Cert Pa ...

  9. JZOJ2020年10月5日提高B组反思

    2020年10月5日提高B组反思 T1 考试的时候想简单了 觉得把跟没有攻占的点相连的边留下就可以了 没有考虑到最小 WA&RE 10 T2 没有思路 就直接从中间往后枚举分解处 蜜汁错误 W ...

随机推荐

  1. QT-2D编程

    QT-[转]2D编程 Qt中提供了强大的2D绘图系统,可以使用相同的API在屏幕上和绘图·设备上进行绘制,主要基于QPainter.QPainterDevice和QPainterEngine这3个类. ...

  2. 基于OpenSSL的RSA加密应用(非算法)

    基于OpenSSL的RSA加密应用(非算法) iOS开发中的小伙伴应该是经常用der和p12进行加密解密,而且在通常加密不止一种加密算法,还可以加点儿盐吧~本文章主要阐述的是在iOS中基于openSL ...

  3. SQL Server 2008 R2 链接 Oracle 10g

    首先sqlserver 链接oracle可以通过两个访问接口: “MSDAORA” 和“OraOLEDB.Oracle” 1.“MSDAORA”访问接口是由Microsoft OLE DB Provi ...

  4. Windows网络通信(二):socket异步编程

    简述 这里使用的API和同步编程的API是差不多的,只多了一个ioctlsocket和select函数.这里面涉及一个很重要的结构体fd_set.这里用到的API大部分都是windows和linux通 ...

  5. python-将爬取到的m3u8合并为mp4

    当你看到这个博客的时候恭喜你,你以后不用开vip就可以观看和下载vip视频了 最简单的观看vip视频步骤:进入全民解析网将vip视频地址进行解析 以下代码是通过python将vip视频进行下载为mp4 ...

  6. NO.06--聊一聊“币”吧!

    近期博主更新的频率明显慢来 ,一来是最近的工作比较忙碌,几个项目几乎同时要上线.二来是在思考是不是把我平时生活中的一些事情写进来博客,不只是分享分享技术. 趁着区块链.比特币火爆,博主也算是略有涉猎, ...

  7. 131. 分割回文串 javascript实现

    给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串. 返回 s 所有可能的分割方案. 示例: 输入: "aab" 输出: [ ["aa",&quo ...

  8. 剑指Offer66题的总结、目录

    原文链接 剑指Offer每日6题系列终于在今天全部完成了,从2017年12月27日到2018年2月27日,历时两个月的写作,其中绝大部分的时间不是花在做题上,而是花在写作上,这个系列不适合大神,大牛, ...

  9. Serverless 架构的优点和缺点

    Serverless 的优势 在我使用 Serverless Framework 开发 AWS Serverless 应用的过程中,最方便的莫过于,第一次部署和第二次.第三次部署没有什么区别.只需要执 ...

  10. 获取文件夹下某个类型的文件名---基于python

    方法1:import osclass flist_name(): def __init__(self,path): self.flist_name=os.listdir(path) def pcap_ ...