bzoj4589 FWT xor版本
4589: Hard Nim
Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 865  Solved: 484
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
4 13
Sample Output
120
HINT
Source
Topcoder SRM 518 Div1 Hard Nim By Tangjz
这题是一个NIM游戏,根据结论,先手输的情况只有所有的石子数xor起来的数为0
https://blog.csdn.net/jr_mz/article/details/51606673
这个blog比我自己瞎比比好多了。
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstdio> #define N 50007
#define ll long long
#define P 1000000007
#define inv 500000004
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,m,len,num;
ll A[(<<)+],B[(<<)+];
int pri[N],np[N]; void FWT(ll *a,int flag)
{
ll x,y;
for (int h=;h<len;h<<=)
for(int j=;j<len;j+=(h<<))
for(int k=j;k<j+h;k++)
{
if (flag==) x=a[k],y=a[k+h],a[k]=(x+y)%P,a[k+h]=(x-y+P)%P;
else x=a[k],y=a[k+h],a[k]=(x+y)*inv%P,a[k+h]=((x-y)*inv%P+P)%P;
}
}
void pow(ll *a,ll y)
{
ll *b=B;b[]=;
FWT(a,),FWT(b,);
while(y)
{
if(y&) for(int i=;i<len;i++) b[i]=a[i]*b[i]%P;
for(int i=;i<len;i++)
a[i]=a[i]*a[i]%P;
y>>=;
}
FWT(b,-);
}
int main()
{
for(int i=;i<=;i++)
{
if(!np[i]) pri[++num]=i;
for(int j=;j<=num&&i*pri[j]<=;j++)
{
np[i*pri[j]]=;
if(i%pri[j]==) break;
}
}
while(~scanf("%d%d",&n,&m))
{
for(len=;len<=m;len<<=);
memset(A,,sizeof(A));
memset(B,,sizeof(B));
for(int i=;i<=num&&pri[i]<=m;i++)
A[pri[i]]=;
pow(A,n);
printf("%lld\n",B[]);
}
}
bzoj4589 FWT xor版本的更多相关文章
- NTT FWT(xor or and) 模板
		
void nnt(int a[],int len,int on) { ;i<len;i++) if(i<r[i]) swap(a[i],a[r[i]]); ;i<len;i<& ...
 - [FWT] UOJ #310. 【UNR #2】黎明前的巧克力
		
[uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) F ...
 - 【洛谷4717】【模板】快速沃尔什变换(FWT模板)
		
点此看题面 大致题意: 有两个长度为\(2^n\)的数组\(A,B\),且\(C_i=\sum_{j⊕k==i}A_jB_k\)分别求出当\(⊕\)为\(or,and,xor\)时的\(C\)数组. ...
 - 浅谈算法——FWT(快速沃尔什变换)
		
其实FWT我啥都不会,反正就是记一波结论,记住就好-- 具体证明的话,推荐博客:FWT快速沃尔什变换学习笔记 现有一些卷积,形如 \(C_k=\sum\limits_{i\lor j=k}A_i*B_ ...
 - FMT/FWT学习笔记
		
目录 FMT/FWT学习笔记 FMT 快速莫比乌斯变换 OR卷积 AND卷积 快速沃尔什变换(FWT/XOR卷积) FMT/FWT学习笔记 FMT/FWT是算法竞赛中求or/and/xor卷积的算法, ...
 - single number和变体
		
给array of integers. 裡面有一个数字是单独出现 其他都会出现两次(而且一起出现)ex: [1,2,2,3,3]要判断哪个数字是单独出现的. 以这个例子的话就是 1 LZ 一开始先说 ...
 - loj#2340. 「WC2018」州区划分
		
FWT&&FMT板子 #include<cstdio> #include<iostream> #include<cstring> #include& ...
 - BZOJ4589 Hard Nim FWT 快速幂 博弈
		
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4589.html 题目传送门 - BZOJ4589 题意 有 $n$ 堆石子,每一堆石子的取值为 $2$ ...
 - BZOJ4589 Hard Nim(博弈+FWT)
		
即使n个数的异或为0.如果只有两堆,将质数筛出来设为1,做一个异或卷积即可.显然这个东西满足结合律,多堆时直接快速幂.可以在点值表示下进行. #include<iostream> #inc ...
 
随机推荐
- 007---logging日志模块
			
logging模块 用途:服务器运行日志.运维日志... import logging from logging.handlers import RotatingFileHandler, TimedR ...
 - java 上溯造型与下塑造型
			
父类: package com.neusoft.chapter07; public class Father { public int i = 1; public void say(){ System ...
 - 3,jieba gensim 最好别分家之最简单的相似度实现
			
简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能 ...
 - WPF中使用第三方字体选择器
			
原文:WPF中使用第三方字体选择器 起因 到WPF的字体可以设置的东西变得非常的多,而却没有提供专用的字体选择对话框,甚至于WinFrom的FontDialog也是不能直接用来设置WPF中的字体.解决 ...
 - Android开发——Android系统启动以及APK安装、启动过程
			
0. 前言 从Android手机打开开关,到我们可以使用其中的app时,这个启动过程到底是怎么样的? 1. 系统上电 当给Android系统上电,在电源接通的瞬间,CPU内的寄存器和各引脚均会被 ...
 - c/c++  随机数生成
			
当程序需要一个随机数时有两种情况下使用: 1.程序中只需使用一次随机数,则调用rand()函数即可 2.程序需要多次使用随机数,那么需要使用srand()函数生成随机数种子在调用rand()函数保证每 ...
 - Python 学习笔记之—— PIL 库
			
PIL,全称 Python Imaging Library,是 Python 平台一个功能非常强大而且简单易用的图像处理库.但是,由于 PIL 仅支持到Python 2.7,加上年久失修,于是一群志愿 ...
 - php+Mysql 页面登录代码
			
登录界面设置: <?php/** * Created by xx. * User: msi * Date: 2017/10/26 * Time: 18:12 *///session每次用之前都要 ...
 - PTA实验报告(循环 数组 函数)
			
一.循环PTA实验作业 题目一.7-2 求平方根序列前N项和 1.本题PTA提交列表 2.设计思路 本题调用了sqrt数学函数计算平方根,其次只用了一层循环,计算平方根之后使用循环累加计算总和sum. ...
 - [C/C++] extern关键字详解以及与static、const区别
			
extern用法详解: 1. 声明外部实体 声明外部全局变量或对象,一般用于头文件中,表示在其它编译单元内定义的变量,链接时进行外部链接,如: extern int ivalue; 此时的extern ...