[Everyday Mathematics]20150102
设 \[ a_1=3,\quad a_{n+1}=\dfrac{1}{2}(a_n^2+1)\quad(n=1,2,\cdots). \] 试求 \[ \vsm{n}\dfrac{1}{1+a_n}. \]
[Everyday Mathematics]20150102的更多相关文章
- [Everyday Mathematics]20150304
证明: $$\bex \frac{2}{\pi}\int_0^\infty \frac{1-\cos 1\cos \lm-\lm \sin 1\sin \lm}{1-\lm^2}\cos \lm x\ ...
- [Everyday Mathematics]20150303
设 $f$ 是 $\bbR$ 上的 $T$ - 周期函数, 试证: $$\bex \int_T^\infty\frac{f(x)}{x}\rd x\mbox{ 收敛 } \ra \int_0^T f( ...
- [Everyday Mathematics]20150302
$$\bex |p|<\frac{1}{2}\ra \int_0^\infty \sex{\frac{x^p-x^{-p}}{1-x}}^2\rd x =2(1-2p\pi \cot 2p\pi ...
- [Everyday Mathematics]20150301
设 $f(x)$ 在 $[-1,1]$ 上有任意阶导数, $f^{(n)}(0)=0$, 其中 $n$ 是任意正整数, 且存在 $C>0$, $$\bex |f^{(n)}(x)|\leq C^ ...
- [Everyday Mathematics]20150228
试证: $$\bex \int_0^\infty \sin\sex{x^3+\frac{\pi}{4}}\rd x =\frac{\sqrt{6}+\sqrt{2}}{4}\int_0^\infty ...
- [Everyday Mathematics]20150227
(Marden's Theorem) 设 $p(z)$ 是三次复系数多项式, 其三个根 $z_1,z_2,z_3$ 不共线; 再设 $T$ 是以 $z_1,z_2,z_3$ 为顶点的三角形. 则存在唯 ...
- [Everyday Mathematics]20150226
设 $z\in\bbC$ 适合 $|z+1|>2$. 试证: $$\bex |z^3+1|>1. \eex$$
- [Everyday Mathematics]20150225
设 $f:\bbR\to\bbR$ 二次可微, 适合 $f(0)=0$. 试证: $$\bex \exists\ \xi\in\sex{-\frac{\pi}{2},\frac{\pi}{2}},\s ...
- [Everyday Mathematics]20150224
设 $A,B$ 是 $n$ 阶实对称矩阵, 它们的特征值 $>1$. 试证: $AB$ 的特征值的绝对值 $>1$.
随机推荐
- python学习笔记6(字典)
映射:键值对的关系,键(key)映射值(value) 字典是Python唯一的映射类型 >>> phonebook = {'} >>> phonebook {'} ...
- maven插件mybatis-generator生成代码配置
鸣谢:http://my.oschina.net/u/1763011/blog/324106?fromerr=nJakGh4P (也可参看此博客进行配置) http://www.cnblogs.com ...
- 基于jquery中children()与find()的区别介绍
本篇文章介绍了,基于jquery中children()与find()的区别,需要的朋友参考下 .children(selector) 方法是返回匹配元素集合中每个元素的所有子元素(仅儿子辈).参数可选 ...
- [转载]Unity3D 访问Access数据库
在开始这个小教程之前呢,其实在网上你已经可以找到相关的资料了,但是我还是要把我自己做练习的一点东西分享出来.写这个教程的主要原因呢,是一个朋友在u3d的官网论坛里,找到了这个demo,但是在他使用的过 ...
- 软件调试之INT 3讲解
第4章断点和单步执行 断点和单步执行是两个经常使用的调试功能,也是调试器的核心功能.本章我们将介绍IA-32 CPU是如何支持断点和单步执行功能的.前两节将分别介绍软件断点和硬件断点,第4.3节介绍用 ...
- XSS与CSRF两种跨站攻击比较
XSS:跨站脚本(Cross-site scripting) CSRF:跨站请求伪造(Cross-site request forgery) 在那个年代,大家一般用拼接字符串的方式来构造动态SQL 语 ...
- 重新学struct,边界对齐,声明……与Union的区别
在内存中,编译器按照成员列表顺序分别为每个结构体变量成员分配内存,当存储过程中需要满足边界对齐的要求时,编译器会在成员之间留下额外的内存空间. 如果想确认结构体占多少存储空间,则使用关键字sizeof ...
- VARCHAR2转换为CLOB碰到ORA-22858错误
近日工作中发现有一张表的字段类型建错了,本应是BLOB类型却被别人建成了VARCHAR2(200),修改时oracle却提示“ORA-22858 invalid alteration of datat ...
- HDU1431+简单题
题意简单 预处理之后会发现符合条件的数最多781个... 所以打表.. /* */ #include<algorithm> #include<iostream> #includ ...
- 提供几个可注册的edu邮箱链接
旧版的邮箱大全有edu邮箱的专题页面,放出来2个国内edu.cn邮箱的注册地址:@live.shop.edu.cn和@abc.shop.edu.cn,现在已经停止开放注册了. 其实旧版中还做了个隐藏的 ...