eigenMatrix
#include <iostream>
using namespace std;
#include <ctime>
// Eigen 部分
#include <Eigen/Core>
// 稠密矩阵的代数运算(逆,特征值等)
#include <Eigen/Dense>
#define MATRIX_SIZE 50
/****************************
* 本程序演示了 Eigen 基本类型的使用
****************************/
int main( int argc, char** argv )
{
// Eigen 中所有向量和矩阵都是Eigen::Matrix,它是一个模板类。它的前三个参数为:数据类型,行,列
// 声明一个2*3的float矩阵
Eigen::Matrix<float, 2, 3> matrix_23;
// 同时,Eigen 通过 typedef 提供了许多内置类型,不过底层仍是Eigen::Matrix
// 例如 Vector3d 实质上是 Eigen::Matrix<double, 3, 1>,即三维向量
Eigen::Vector3d v_3d;
// 这是一样的
Eigen::Matrix<float,3,1> vd_3d;
// Matrix3d 实质上是 Eigen::Matrix<double, 3, 3>
Eigen::Matrix3d matrix_33 = Eigen::Matrix3d::Zero(); //初始化为零
// 如果不确定矩阵大小,可以使用动态大小的矩阵
Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic > matrix_dynamic;
// 更简单的
Eigen::MatrixXd matrix_x;
// 这种类型还有很多,我们不一一列举
// 下面是对Eigen阵的操作
// 输入数据(初始化)
matrix_23 << 1, 2, 3, 4, 5, 6;
// 输出
cout << matrix_23 << endl;
cout << "----------------" << endl;
// 用()访问矩阵中的元素
for (int i=0; i<2; i++) {
for (int j=0; j<3; j++)
cout<<matrix_23(i,j)<<"\t";
cout<<endl;
}
// 矩阵和向量相乘(实际上仍是矩阵和矩阵)
v_3d << 3, 2, 1;
vd_3d << 4,5,6;
// 但是在Eigen里你不能混合两种不同类型的矩阵,像这样是错的
// Eigen::Matrix<double, 2, 1> result_wrong_type = matrix_23 * v_3d;
// 应该显式转换
Eigen::Matrix<double, 2, 1> result = matrix_23.cast<double>() * v_3d;
cout << result << endl;
Eigen::Matrix<float, 2, 1> result2 = matrix_23 * vd_3d;
cout << result2 << endl;
// 同样你不能搞错矩阵的维度
// 试着取消下面的注释,看看Eigen会报什么错
// Eigen::Matrix<double, 2, 3> result_wrong_dimension = matrix_23.cast<double>() * v_3d;
// 一些矩阵运算
// 四则运算就不演示了,直接用+-*/即可。
cout << "----------------" << endl;
matrix_33 = Eigen::Matrix3d::Random(); // 随机数矩阵
cout << "matrix_33" << endl;
cout << matrix_33 << endl << endl;
cout << "matrix_33.transpose()" << endl << matrix_33.transpose() << endl << endl; // 转置
cout << "matrix_33.sum()" << endl << matrix_33.sum() << endl << endl; // 各元素和
cout << "matrix_33.trace()" << endl << matrix_33.trace() << endl<< endl; // 迹
cout << 10*matrix_33 << endl<< endl; // 数乘
cout << "matrix_33.inverse()" << endl << matrix_33.inverse() << endl << endl; // 逆
cout << "matrix_33.determinant()" << endl << matrix_33.determinant() << endl << endl; // 行列式
// 特征值
// 实对称矩阵可以保证对角化成功
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigen_solver ( matrix_33.transpose()*matrix_33 );
cout << "Eigen values = \n" << eigen_solver.eigenvalues() << endl << endl;
cout << "Eigen vectors = \n" << eigen_solver.eigenvectors() << endl << endl;
// 解方程
// 我们求解 matrix_NN * x = v_Nd 这个方程
// N的大小在前边的宏里定义,它由随机数生成
// 直接求逆自然是最直接的,但是求逆运算量大
Eigen::Matrix< double, MATRIX_SIZE, MATRIX_SIZE > matrix_NN;
matrix_NN = Eigen::MatrixXd::Random( MATRIX_SIZE, MATRIX_SIZE );
Eigen::Matrix< double, MATRIX_SIZE, 1> v_Nd;
v_Nd = Eigen::MatrixXd::Random( MATRIX_SIZE,1 );
clock_t time_stt = clock(); // 计时
// 直接求逆
Eigen::Matrix<double,MATRIX_SIZE,1> x = matrix_NN.inverse()*v_Nd;
cout <<"time use in normal inverse is " << 1000* (clock() - time_stt)/(double)CLOCKS_PER_SEC << "ms"<< endl;
// 通常用矩阵分解来求,例如QR分解,速度会快很多
time_stt = clock();
x = matrix_NN.colPivHouseholderQr().solve(v_Nd);
cout <<"time use in Qr decomposition is " <<1000* (clock() - time_stt)/(double)CLOCKS_PER_SEC <<"ms" << endl;
return 0;
}
eigenMatrix的更多相关文章
- PeopleRank从社交网络中发现个体价值
阅读导读: 1.什么是PeopleRank? 2.PeopleRank和PageRank有什么差别? 3.PR分析微博数据时,怎样对微博单个账号评分? 4.R语言怎样递归计算矩阵特征值? 5.怎样计算 ...
- 主成分分析(PCA)与SVD奇异值分解
主要参考:https://www.zhihu.com/question/38417101/answer/94338598 http://blog.jobbole.com/88208/ 先说下PCA ...
- Eigen库笔记整理(一)
首先熟悉Eigen库的用途,自行百度. 引入头文件: // Eigen 部分 #include <Eigen/Core> // 稠密矩阵的代数运算(逆,特征值等) #include < ...
- 视觉SLAM十四讲(三)——三维空间刚体运动(下)
理论部分请看 :三维空间刚体运动 一.Eigen的使用 首先安装 Eigen: sudo apt-get install libeigen3-dev 一般都安装在 /usr/include/eigen ...
- 使用Eigen遇到恶心报错
参考博客:https://www.cnblogs.com/wongyi/p/8734346.html 1. 数据类型报错 /home/wy/workdir/slambook/ch3/useEigen/ ...
- PageRank算法R语言实现
PageRank算法R语言实现 Google搜索,早已成为我每天必用的工具,无数次惊叹它搜索结果的准确性.同时,我也在做Google的SEO,推广自己的博客.经过几个月尝试,我的博客PR到2了,外链也 ...
- WSL配置高翔vslam环境
WSL配置高翔vslam环境 步骤: 安装 windows wls 配置 g++ cmake 环境 编译运行一下例子 1. window启用 wsl 前往 "启用或关闭 Windows 功能 ...
- WSL (Windows Subsystem for Linux) 的 VSLAM (Visual Simultaneous Localization and Mapping) 道路
WSL 的 VSLAM 道路 以 Windows Subsystem for Linux 闯入 Visual Simultaneous Localization and Mapping 世界的艰难道路 ...
随机推荐
- Oracle给Select结果集加锁,Skip Locked(跳过加锁行获得可以加锁的结果集)
1.通过select for update或select for update wait或select for update nowait给数据集加锁 具体实现参考select for update和 ...
- JMeter元件的作用域与执行顺序
元件的作用域 先来讨论一下元件有作用域.<JMeter基础元件介绍>一节中,我们介绍了8类可被执行的元件(测试计划与线程组不属于元件),这些元件中,取样器 是典型的不与其它元件发生交互作用 ...
- Robot Framework(AutoItLibrary库关键字介绍)
AutoItLibrary库关键字 AutoItLibrary 的对象操作大体上有几大主要部分,Window 操作.Control 操作.Mouse 操作.Process操作.Run 操作.Reg 操 ...
- window server 搭建git服务器
Git服务器Gogs简易安装-Windows环境 1.下载git for windows 1 https://github.com/git-for-windows/git/releases/dow ...
- Golang教程:接口
什么是接口 在面向对象语言中,接口一般被定义为 :接口定义了一个对象的行为.它仅仅指定了一个对象应该做什么.具体怎么做(实现细节)是由对象决定的. 在 Go 中,一个接口定义为若干方法的签名.当一个类 ...
- Centos7 linux下 安装 Redis 5.0
网上找了很多文章,发现不全而且有些问题,安装很多次之后,总结一篇可以使用的,记录之. 环境:Centos7+Redis 5.0,如果环境不符合,本篇仅供参考. 1.准备工作 作者习惯软件安装包放在单独 ...
- Linux中的叹号命令
在shell环境下操作,需要积累点快捷输入的小技巧: 最常用的技巧恐怕就是Tab自动补全以及上方向键来回退上几条历史命令了,这些对于csh,bash,ksh,zsh都适用. 最近还找到一种快速回退上一 ...
- Rabbit的事务
加入事务的方法: txSelect() txCommit() txRollback() 生产者: package com.kf.queueDemo.transactions; import jav ...
- 中南oj 1215: 稳定排序
1215: 稳定排序 Time Limit: 2 Sec Memory Limit: 128 MB Submit: 111 Solved: 43 [Submit][Status][Web Boar ...
- MyBatis_动态代理
一.项目结构 二.代码实现 import java.util.List; import java.util.Map; import com.jmu.bean.Student; public inter ...