#include <iostream>
using namespace std;
#include <ctime>
// Eigen 部分
#include <Eigen/Core>
// 稠密矩阵的代数运算(逆,特征值等)
#include <Eigen/Dense> #define MATRIX_SIZE 50 /****************************
* 本程序演示了 Eigen 基本类型的使用
****************************/ int main( int argc, char** argv )
{
// Eigen 中所有向量和矩阵都是Eigen::Matrix,它是一个模板类。它的前三个参数为:数据类型,行,列
// 声明一个2*3的float矩阵
Eigen::Matrix<float, 2, 3> matrix_23; // 同时,Eigen 通过 typedef 提供了许多内置类型,不过底层仍是Eigen::Matrix
// 例如 Vector3d 实质上是 Eigen::Matrix<double, 3, 1>,即三维向量
Eigen::Vector3d v_3d;
// 这是一样的
Eigen::Matrix<float,3,1> vd_3d; // Matrix3d 实质上是 Eigen::Matrix<double, 3, 3>
Eigen::Matrix3d matrix_33 = Eigen::Matrix3d::Zero(); //初始化为零
// 如果不确定矩阵大小,可以使用动态大小的矩阵
Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic > matrix_dynamic;
// 更简单的
Eigen::MatrixXd matrix_x;
// 这种类型还有很多,我们不一一列举 // 下面是对Eigen阵的操作
// 输入数据(初始化)
matrix_23 << 1, 2, 3, 4, 5, 6;
// 输出
cout << matrix_23 << endl;
cout << "----------------" << endl; // 用()访问矩阵中的元素
for (int i=0; i<2; i++) {
for (int j=0; j<3; j++)
cout<<matrix_23(i,j)<<"\t";
cout<<endl;
} // 矩阵和向量相乘(实际上仍是矩阵和矩阵)
v_3d << 3, 2, 1;
vd_3d << 4,5,6;
// 但是在Eigen里你不能混合两种不同类型的矩阵,像这样是错的
// Eigen::Matrix<double, 2, 1> result_wrong_type = matrix_23 * v_3d;
// 应该显式转换
Eigen::Matrix<double, 2, 1> result = matrix_23.cast<double>() * v_3d;
cout << result << endl; Eigen::Matrix<float, 2, 1> result2 = matrix_23 * vd_3d;
cout << result2 << endl; // 同样你不能搞错矩阵的维度
// 试着取消下面的注释,看看Eigen会报什么错
// Eigen::Matrix<double, 2, 3> result_wrong_dimension = matrix_23.cast<double>() * v_3d; // 一些矩阵运算
// 四则运算就不演示了,直接用+-*/即可。
cout << "----------------" << endl;
matrix_33 = Eigen::Matrix3d::Random(); // 随机数矩阵
cout << "matrix_33" << endl;
cout << matrix_33 << endl << endl; cout << "matrix_33.transpose()" << endl << matrix_33.transpose() << endl << endl; // 转置
cout << "matrix_33.sum()" << endl << matrix_33.sum() << endl << endl; // 各元素和
cout << "matrix_33.trace()" << endl << matrix_33.trace() << endl<< endl; // 迹
cout << 10*matrix_33 << endl<< endl; // 数乘
cout << "matrix_33.inverse()" << endl << matrix_33.inverse() << endl << endl; // 逆
cout << "matrix_33.determinant()" << endl << matrix_33.determinant() << endl << endl; // 行列式 // 特征值
// 实对称矩阵可以保证对角化成功
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigen_solver ( matrix_33.transpose()*matrix_33 );
cout << "Eigen values = \n" << eigen_solver.eigenvalues() << endl << endl;
cout << "Eigen vectors = \n" << eigen_solver.eigenvectors() << endl << endl; // 解方程
// 我们求解 matrix_NN * x = v_Nd 这个方程
// N的大小在前边的宏里定义,它由随机数生成
// 直接求逆自然是最直接的,但是求逆运算量大 Eigen::Matrix< double, MATRIX_SIZE, MATRIX_SIZE > matrix_NN;
matrix_NN = Eigen::MatrixXd::Random( MATRIX_SIZE, MATRIX_SIZE );
Eigen::Matrix< double, MATRIX_SIZE, 1> v_Nd;
v_Nd = Eigen::MatrixXd::Random( MATRIX_SIZE,1 ); clock_t time_stt = clock(); // 计时
// 直接求逆
Eigen::Matrix<double,MATRIX_SIZE,1> x = matrix_NN.inverse()*v_Nd;
cout <<"time use in normal inverse is " << 1000* (clock() - time_stt)/(double)CLOCKS_PER_SEC << "ms"<< endl; // 通常用矩阵分解来求,例如QR分解,速度会快很多
time_stt = clock();
x = matrix_NN.colPivHouseholderQr().solve(v_Nd);
cout <<"time use in Qr decomposition is " <<1000* (clock() - time_stt)/(double)CLOCKS_PER_SEC <<"ms" << endl; return 0;
}

eigenMatrix的更多相关文章

  1. PeopleRank从社交网络中发现个体价值

    阅读导读: 1.什么是PeopleRank? 2.PeopleRank和PageRank有什么差别? 3.PR分析微博数据时,怎样对微博单个账号评分? 4.R语言怎样递归计算矩阵特征值? 5.怎样计算 ...

  2. 主成分分析(PCA)与SVD奇异值分解

      主要参考:https://www.zhihu.com/question/38417101/answer/94338598 http://blog.jobbole.com/88208/ 先说下PCA ...

  3. Eigen库笔记整理(一)

    首先熟悉Eigen库的用途,自行百度. 引入头文件: // Eigen 部分 #include <Eigen/Core> // 稠密矩阵的代数运算(逆,特征值等) #include < ...

  4. 视觉SLAM十四讲(三)——三维空间刚体运动(下)

    理论部分请看 :三维空间刚体运动 一.Eigen的使用 首先安装 Eigen: sudo apt-get install libeigen3-dev 一般都安装在 /usr/include/eigen ...

  5. 使用Eigen遇到恶心报错

    参考博客:https://www.cnblogs.com/wongyi/p/8734346.html 1. 数据类型报错 /home/wy/workdir/slambook/ch3/useEigen/ ...

  6. PageRank算法R语言实现

    PageRank算法R语言实现 Google搜索,早已成为我每天必用的工具,无数次惊叹它搜索结果的准确性.同时,我也在做Google的SEO,推广自己的博客.经过几个月尝试,我的博客PR到2了,外链也 ...

  7. WSL配置高翔vslam环境

    WSL配置高翔vslam环境 步骤: 安装 windows wls 配置 g++ cmake 环境 编译运行一下例子 1. window启用 wsl 前往 "启用或关闭 Windows 功能 ...

  8. WSL (Windows Subsystem for Linux) 的 VSLAM (Visual Simultaneous Localization and Mapping) 道路

    WSL 的 VSLAM 道路 以 Windows Subsystem for Linux 闯入 Visual Simultaneous Localization and Mapping 世界的艰难道路 ...

随机推荐

  1. Python openpyxl Read

    #! /usr/bin/env python # coding=utf-8 from openpyxl import Workbook, load_workbook wb = load_workboo ...

  2. 关于mouseleave事件触发的bug问题

    在做下拉树搜索功能的时候,下方内容框需要一个鼠标移出时就隐藏的功能,于是使用mouseleave的方法, 但是出现了一个问题就是在点击树展开个隐藏的时候,也触发了leave事件,将下方的树进行隐藏,出 ...

  3. 截取字符串-【.net】

    问题: 如: asdasdfasdf asdfasdf 12sdfsdf asdfa 截取后为: asdasdfasdf asdfasdf 12sdfsdf 为第一段asdfa 为第二段 解答: Di ...

  4. C 标准库 - string.h之strspn使用

    strspn Returns the length of the initial portion of str1 which consists only of characters that are ...

  5. ELF文件解析器支持x86x64ELF文件

    此文为静态分析ELF文件结构,遍历其中Elf_Ehdr文件头信息,遍历Elf_Shdr节表头信息,并将所有节放置在左侧树控件上,遍历Elf_Phdr程序头也放置在左侧树控件上,并着重分析字符串表,重定 ...

  6. Swift强制解析

    IDE:Xcode Version7.3.1 Swift中"数据类型?"表示这是可选类型,即 某个常量或者变量可能是一个类型,也可能什么都没有,不确定它是否有值,也许会是nil. ...

  7. vscode设置中文,设置中文不成功问题

    刚安装好的vscode界面显示英文,如何设置中文呢? 在locale.json界面设置”locale":"zh-cn"也未能实现界面为中文,在网上找了参考了,以下教程真实 ...

  8. 三:Maven创建问题

    1.httpServlet was not found 设置server为tomcat,jre设置为安装的jdk的jre java build path 添加server runtime为tomcat ...

  9. poj Corn Fields 状态压缩dp。

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 5763   Accepted: 3052 Descr ...

  10. Spring_Spring与IoC_基于注解的DI

    一.基本注解的使用 (1)导入AOP的Jar包 (2) 与set()无关 二.组件扫描器的base-package 三.@Component相关注解 四.@Scope 五.域属性的注入 (1)byTy ...