【刷题】洛谷 P2764 最小路径覆盖问题
题目描述
«问题描述:
给定有向图G=(V,E)。设P 是G 的一个简单路(顶点不相交)的集合。如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖。P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别地,可以为0。G 的最小路径覆盖是G 的所含路径条数最少的路径覆盖。设计一个有效算法求一个有向无环图G 的最小路径覆盖。提示:设V={1,2,.... ,n},构造网络G1=(V1,E1)如下:

每条边的容量均为1。求网络G1的( 0 x , 0 y )最大流。
«编程任务:
对于给定的给定有向无环图G,编程找出G的一个最小路径覆盖。
输入输出格式
输入格式:
件第1 行有2个正整数n和m。n是给定有向无环图G 的顶点数,m是G 的边数。接下来的m行,每行有2 个正整数i和j,表示一条有向边(i,j)。
输出格式:
从第1 行开始,每行输出一条路径。文件的最后一行是最少路径数。
输入输出样例
输入样例#1:
11 12
1 2
1 3
1 4
2 5
3 6
4 7
5 8
6 9
7 10
8 11
9 11
10 11
输出样例#1:
1 4 7 10 11
2 5 8
3 6 9
3
说明
1<=n<=150,1<=m<=6000
题解
DAG点不可重最小路径覆盖=点数-最大匹配数
对于路径,就记录匹配边,按匹配边搜索就好了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=1000000+10;
int n,las=1,tot=1,len[MAXN<<1],ch[MAXN<<1][30],fa[MAXN<<1],cnt[MAXN],rk[MAXN<<1],size[MAXN<<1];
ll ans;
char s[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void extend(int c)
{
int p=las,np=++tot;
las=np;
len[np]=len[p]+1;
while(p&&!ch[p][c])ch[p][c]=np,p=fa[p];
if(!p)fa[np]=1;
else
{
int q=ch[p][c];
if(len[q]==len[p]+1)fa[np]=q;
else
{
int nq=++tot;
fa[nq]=fa[q];
memcpy(ch[nq],ch[q],sizeof(ch[nq]));
len[nq]=len[p]+1,fa[q]=fa[np]=nq;
while(p&&ch[p][c]==q)ch[p][c]=nq,p=fa[p];
}
}
size[np]=1;
}
int main()
{
scanf("%s",s+1);
n=strlen(s+1);
for(register int i=1;i<=n;++i)extend(s[i]-'a'+1);
for(register int i=1;i<=tot;++i)cnt[len[i]]++;
for(register int i=1;i<=n;++i)cnt[i]+=cnt[i-1];
for(register int i=1;i<=tot;++i)rk[cnt[len[i]]--]=i;
for(register int i=tot;i>=1;--i)
{
size[fa[rk[i]]]+=size[rk[i]];
if(size[rk[i]]>1)chkmax(ans,1ll*size[rk[i]]*len[rk[i]]);
}
write(ans,'\n');
return 0;
}
【刷题】洛谷 P2764 最小路径覆盖问题的更多相关文章
- 洛谷 P2764 最小路径覆盖问题 解题报告
P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...
- 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】
题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...
- 洛谷P2764 最小路径覆盖问题
有向无环图的最小路径点覆盖 最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点. 有定理:顶点数-路径数=被覆盖的边数. 要理解的话可以从两个方向: 假设DAG已 ...
- 洛谷P2764 最小路径覆盖问题(最大流)
传送门 先说做法:把原图拆成一个二分图,每一个点被拆成$A_i,B_i$,若原图中存在边$(u,v)$,则连边$(A_u,B_v)$,然后$S$对所有$A$连边,所有$B$对$T$连边,然后跑一个最大 ...
- 洛谷 P2764 最小路径覆盖问题【匈牙利算法】
经典二分图匹配问题.把每个点拆成两个,对于原图中的每一条边(i,j)连接(i,j+n),最小路径覆盖就是点数n-二分图最大匹配.方案直接顺着匹配dsf.. #include<iostream&g ...
- 洛谷 P2764(最小路径覆盖=节点数-最大匹配)
给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别 ...
- 洛谷P2764 最小路径覆盖问题(二分图)
题意 给出一张有向无环图,求出用最少的路径覆盖整张图,要求路径在定点处不相交 输出方案 Sol 定理:路径覆盖 = 定点数 - 二分图最大匹配数 直接上匈牙利 输出方案的话就不断的从一个点跳匹配边 # ...
- 洛谷-p2764(最小路径覆盖)(网络流24题)
#include<iostream> #include<algorithm> #include<queue> #include<cstring> #in ...
- 洛谷 [P2764]最小路径覆盖问题
二分图应用模版 #include <iostream> #include <cstdio> #include <algorithm> #include <cs ...
随机推荐
- Spring Boot 2.x Redis多数据源配置(jedis,lettuce)
Spring Boot 2.x Redis多数据源配置(jedis,lettuce) 96 不敢预言的预言家 0.1 2018.11.13 14:22* 字数 65 阅读 727评论 0喜欢 2 多数 ...
- php输出带尖括号的内容
有这样的数组 $arr = array( 'facebook' => 'facebook', '<facebook>' => '<facebook>', ); 输出 ...
- 一、Lambda表达式
一.Lambda是什么? Lambda是一个匿名函数,我们可以把Lambda理解为是一段可以传递的代码.可以写出简洁.灵活的代码.作为一种更紧凑的代码风格,使java的语言表达能力得到提升. 二.La ...
- Linux命令应用大词典-第45章 服务器配置
45.1 ssh-agent:存储用于公钥验证的私钥 45.2 ssh-add:添加RSA或DSA身份的认证代理 45.3 ssh-keyscan:收集主机公钥 45.4 sshd:运行sshd守护进 ...
- Linux搭建mysql、apache、php服务总结
本随笔文章,由个人博客(鸟不拉屎)转移至博客园 写于:2018 年 04 月 22 日 原地址:https://niaobulashi.com/archives/linux-mysql-apache- ...
- 给大家推荐:五个Python小项目,Github上的人气很高的
1.深度学习框架 Pytorch https://github.com/pytorch/pytorch PyTorch 是一个 Torch7 团队开源的 Python 优先的深度学习框架,提供两个高级 ...
- HDU-1496(哈希表)
Hash入门第一题 题意: 问题描述 考虑具有以下形式的方程: a * x1 ^ 2 + b * x2 ^ 2 + c * x3 ^ 2 + d * x4 ^ 2 = 0 a,b,c,d是来自区间[- ...
- leetcode-打家劫舍(动态规划)
你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警. 给定一个代表每 ...
- 【第三章】Shell 变量的数值计算
一.算数运算符 shell中常见的算术运算符: shell中常见的算术命令: 1. 整数运算 方法一:expr expr命令就既可以用于整数运算,也可以用于相关字符串长度.匹配等的运算处理: exp ...
- 基于angular+bower+glup的webapp
一:bower介绍 1:全局安装安装bower cnpm i -g bower bower常用指令: bower init //初始化文件 bower install bower uninstall ...