http://poj.org/problem?id=1830

高斯消元无解的条件:当存在非法的左式=0而右式不等于0的情况,即为非法。这个可以在消元后,对没有使用过的方程验证是否右式不等于0(此时因为前边消元一定会使得后边的方程左式为0)

高斯消元自由变元:自由变元就是当这些未知量一旦确定,整个方程就确定了。但是这些量是未知的。(例如x+y=5,自由变元就是1,因为无论是x还是y确定,另一个就能唯一确定),而答案要求的是方案,那么显然因为自由变元是可以随便赋值的,而这些值只有2个,开和不开,那么方案数就是2^自由变元。而自由变元的求法很简单,具体解释看白书,其实就是仅当n个不同的方程(就是无论怎么通过其它方程都不会将这两个方程变成一样)才能确定n个解。那么我们如果只确定了x个方程,那么自由变元的数量就是n-x。(这个x可以轻易得到,因为在高斯消元过程中,会消元,而消元会将相同的方程消成这个样子:0=0。那么这个就是没用的方程。

而高斯消元我们要在原有的求一定有解的高斯消元算法改动一下。

我们记录当前的方程x和当前的未知数y,我们知道只有在所有a行,a>=x有A[a][y]!=0时,那么就可以消元,消元后这个方程就是确定的了,那么x++;反之不存在这个a,那么未知数y++

还有一个要注意的是,我们建图时,如果初始状态和末状态相等,意味着这个未知量不需要改变,即A[i][n+1]=0,反之A[i][n+1]=1。且每一个方程组x,如果有未知量y能够造成未知量x改变,那么A[x][y]=1(所以这点千万不要在建图的时候弄错了!)

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=35;
typedef int mtx[N][N];
int gauss(mtx A, int n) {
int x=1, y=1;
while(x<=n && y<=n) {
int pos=x;
while(!A[pos][y] && pos<=n) ++pos;
if(A[pos][y]) {
for1(i, 1, n+1) swap(A[pos][i], A[x][i]);
for1(i, x+1, n) if(A[i][y])
for1(j, y, n+1) A[i][j]^=A[x][j];
++x;
}
++y;
}
for1(i, x, n) if(A[i][n+1]) return -1;
return n-x+1;
}
int main() {
int cs=getint();
mtx a;
while(cs--) {
CC(a, 0);
int n=getint();
for1(i, 1, n) read(a[i][n+1]), a[i][i]=1;
for1(i, 1, n) a[i][n+1]^=getint();
int x=getint(), y=getint();
while(x+y) {
a[y][x]=1;
x=getint(), y=getint();
}
int ans=gauss(a, n);
if(ans==-1) puts("Oh,it's impossible~!!");
else printf("%d\n", 1<<ans);
}
return 0;
}

Description

有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开。你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态。对于任意一个开关,最多只能进行一次开关操作。你的任务是,计算有多少种可以达到指定状态的方法。(不计开关操作的顺序)

Input

输入第一行有一个数K,表示以下有K组测试数据。 
每组测试数据的格式如下: 
第一行 一个数N(0 < N < 29) 
第二行 N个0或者1的数,表示开始时N个开关状态。 
第三行 N个0或者1的数,表示操作结束后N个开关的状态。 
接下来 每行两个数I J,表示如果操作第 I 个开关,第J个开关的状态也会变化。每组数据以 0 0 结束。 

Output

如果有可行方法,输出总数,否则输出“Oh,it's impossible~!!” 不包括引号

Sample Input

2
3
0 0 0
1 1 1
1 2
1 3
2 1
2 3
3 1
3 2
0 0
3
0 0 0
1 0 1
1 2
2 1
0 0

Sample Output

4
Oh,it's impossible~!!

Hint

第一组数据的说明: 
一共以下四种方法: 
操作开关1 
操作开关2 
操作开关3 
操作开关1、2、3 (不记顺序) 

Source

  

【POJ】1830 开关问题(高斯消元)的更多相关文章

  1. POJ 1830 开关问题 高斯消元,自由变量个数

    http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被 ...

  2. POJ 1830 开关问题 (高斯消元)

    题目链接 题意:中文题,和上篇博客POJ 1222是一类题. 题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择. 代码: #include <iostream> ...

  3. POJ 1830 开关问题 [高斯消元XOR]

    和上两题一样 Input 输入第一行有一个数K,表示以下有K组测试数据. 每组测试数据的格式如下: 第一行 一个数N(0 < N < 29) 第二行 N个0或者1的数,表示开始时N个开关状 ...

  4. POJ.1830.开关问题(高斯消元 异或方程组)

    题目链接 显然我们需要使每个i满足\[( ∑_{j} X[j]*A[i][j] ) mod\ 2 = B[i]\] 求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\) %2可以用^ ...

  5. POJ 3185 The Water Bowls 【一维开关问题 高斯消元】

    任意门:http://poj.org/problem?id=3185 The Water Bowls Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  6. POJ - 1681: Painter's Problem (开关问题-高斯消元)

    pro:开关问题,同上一题. 不过只要求输出最小的操作步数,无法完成输出“inf” sol:高斯消元的解对应的一组合法的最小操作步数. #include<bits/stdc++.h> #d ...

  7. POJ - 1222: EXTENDED LIGHTS OUT (开关问题-高斯消元)

    pro:给定5*6的灯的状态,如果我们按下一个灯的开关,它和周围4个都会改变状态.求一种合法状态,使得终状态全为关闭: sol:模2意义下的高斯消元. 终于自己手打了一个初级板子. #include& ...

  8. A - The Water Bowls POJ - 3185 (bfs||高斯消元)

    题目链接:https://vjudge.net/contest/276374#problem/A 题目大意:给你20个杯子,每一次操作,假设当前是对第i个位置进行操作,那么第i个位置,第i+1个位置, ...

  9. POJ 1166 The Clocks 高斯消元 + exgcd(纯属瞎搞)

    依据题意可构造出方程组.方程组的每一个方程格式均为:C1*x1 + C2*x2 + ...... + C9*x9 = sum + 4*ki; 高斯消元构造上三角矩阵,以最后一个一行为例: C*x9 = ...

  10. POJ 2065 SETI(高斯消元)

    题目链接:http://poj.org/problem?id=2065 题意:给出一个字符串S[1,n],字母a-z代表1到26,*代表0.我们用数组C[i]表示S[i]经过该变换得到的数字.给出一个 ...

随机推荐

  1. PAT L1-048 矩阵A乘以B

    https://pintia.cn/problem-sets/994805046380707840/problems/994805082313310208 给定两个矩阵A和B,要求你计算它们的乘积矩阵 ...

  2. 【Linux】- ps 命令

    Linux ps命令用于显示当前进程 (process) 的状态. 语法 ps [options] [--help] 参数: -A     列出所有的行程 -w    显示加宽可以显示较多的资讯 -a ...

  3. SpringBoot2.0(五) CORS跨域

    部分跨域 @CrossOrigin注解支持类级别,方法级别添加.可以在controller类或者方法上添加,支持部分接口跨域.在两者上都添加时,方法级别的覆盖类级别的. 属性 说明 origins 允 ...

  4. BZOJ 1806 矿工配餐(DP)

    很水的DP. 因为每一个餐车的加入只需要知道当前矿洞的前两个餐车种类就行了.而餐车一共就三种. 所以令dp[i][Sa][Sb]表示前i辆餐车送餐完毕后第一个矿洞的前两个餐车种类为Sa,第二个矿洞的前 ...

  5. WCF服务的建立以及调用

    WCF对我来说既陌生又熟悉,陌生是因为没怎么接触过,熟悉是听得太多,今天抽出点时间看了一下WCF,并且自己也写了一WCF的小程序以及调用WCF.步骤为: 1.创建一个解决方案WCF,和一个控制台项目W ...

  6. BFS的小结

    写这类搜索题.首先感觉要有个框架.比如我的框架对于BFS来说(对于DFS,我想有两个一个是递归版一个是栈版).这里是BFS小结.所以介绍一下BFS.我的框架.(也是搜集了网上许多神人的作品.) 1:节 ...

  7. BZOJ1023:[SHOI2008]仙人掌图——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1023 Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple ...

  8. UVA.10192 Vacation (DP LCS)

    UVA.10192 Vacation (DP LCS) 题意分析 某人要指定旅游路线,父母分别给出了一系列城市的旅游顺序,求满足父母建议的最大的城市数量是多少. 对于父母的建议分别作为2个子串,对其做 ...

  9. HDOJ.1263 水果(map)

    水果 点我跳转到题面 点我一起学习STL-MAP 题意分析 给出多组测试数据,每组数据有多条信息.分别是水果种类,地点,和水果数目.每组信息要按照样例输出,并且输出要按照地点->水果种类的字典序 ...

  10. 常见的shell命令总结

    1.查看一个程序是否运行   ps –ef|grep tomcat 查看所有有关tomcat的进程 2.终止线程   kill -9 2222  3.查看文件,包含隐藏文件   ls -al 4.当前 ...