吴裕雄 PYTHON 人工智能——基于MASK_RCNN目标检测(5)
import os
import sys
import numpy as np
import tensorflow as tf
import matplotlib
import matplotlib.pyplot as plt
import keras import utils
import model as modellib
import visualize
from model import log %matplotlib inline # Root directory of the project
ROOT_DIR = os.getcwd() # Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs") # Local path to trained weights file
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
# Download COCO trained weights from Releases if needed
if not os.path.exists(COCO_MODEL_PATH):
utils.download_trained_weights(COCO_MODEL_PATH) # Path to Shapes trained weights
SHAPES_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_shapes.h5")
# Run one of the code blocks # Shapes toy dataset
# import shapes
# config = shapes.ShapesConfig() # MS COCO Dataset
import coco
config = coco.CocoConfig()
# Device to load the neural network on.
# Useful if you're training a model on the same
# machine, in which case use CPU and leave the
# GPU for training.
DEVICE = "/cpu:0" # /cpu:0 or /gpu:0
def get_ax(rows=1, cols=1, size=16):
"""Return a Matplotlib Axes array to be used in
all visualizations in the notebook. Provide a
central point to control graph sizes. Adjust the size attribute to control how big to render images
"""
_, ax = plt.subplots(rows, cols, figsize=(size*cols, size*rows))
return ax
# Create model in inference mode
with tf.device(DEVICE):
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR,
config=config) # Set weights file path
if config.NAME == "shapes":
weights_path = SHAPES_MODEL_PATH
elif config.NAME == "coco":
weights_path = COCO_MODEL_PATH
# Or, uncomment to load the last model you trained
# weights_path = model.find_last()[1] # Load weights
print("Loading weights ", weights_path)
model.load_weights(weights_path, by_name=True)
# Show stats of all trainable weights
visualize.display_weight_stats(model)

# Pick layer types to display
LAYER_TYPES = ['Conv2D', 'Dense', 'Conv2DTranspose']
# Get layers
layers = model.get_trainable_layers()
layers = list(filter(lambda l: l.__class__.__name__ in LAYER_TYPES,
layers))
# Display Histograms
fig, ax = plt.subplots(len(layers), 2, figsize=(10, 3*len(layers)),
gridspec_kw={"hspace":1})
for l, layer in enumerate(layers):
weights = layer.get_weights()
for w, weight in enumerate(weights):
tensor = layer.weights[w]
ax[l, w].set_title(tensor.name)
_ = ax[l, w].hist(weight[w].flatten(), 50)

吴裕雄 PYTHON 人工智能——基于MASK_RCNN目标检测(5)的更多相关文章
- 吴裕雄 PYTHON 人工智能——基于MASK_RCNN目标检测(4)
import os import sys import random import math import re import time import numpy as np import tenso ...
- 吴裕雄 python 人工智能——基于Mask_RCNN目标检测(3)
import os import sys import random import math import re import time import numpy as np import cv2 i ...
- 吴裕雄 python 人工智能——基于Mask_RCNN目标检测(2)
import os import sys import itertools import math import logging import json import re import random ...
- 吴裕雄 python 人工智能——基于Mask_RCNN目标检测(1)
import os import sys import random import math import numpy as np import skimage.io import matplotli ...
- 吴裕雄 python 人工智能——基于神经网络算法在智能医疗诊断中的应用探索代码简要展示
#K-NN分类 import os import sys import time import operator import cx_Oracle import numpy as np import ...
- 吴裕雄 PYTHON 人工智能——智能医疗系统后台智能分诊模块及系统健康养生公告简约版代码展示
#coding:utf-8 import sys import cx_Oracle import numpy as np import pandas as pd import tensorflow a ...
- 吴裕雄 python 人工智能——智能医疗系统后台用户复诊模块简约版代码展示
#复诊 import sys import os import time import operator import cx_Oracle import numpy as np import pand ...
- 吴裕雄 python 人工智能——智能医疗系统后台用户注册、登录和初诊简约版代码展示
#用户注册.登录模块 #数据库脚本 CREATE TABLE usertable( userid number(8) primary key not null , username varchar(5 ...
- TF项目实战(基于SSD目标检测)——人脸检测1
SSD实战——人脸检测 Tensorflow 一 .人脸检测的困难: 1. 姿态问题 2.不同种族人, 3.光照 遮挡 带眼睛 4.视角不同 5. 不同尺度 二. 数据集介绍以及转化VOC: 1. F ...
随机推荐
- Linux 基本命令简单学习
平常工作中需要使用到的一些Linux基本命令,简单记录: 通过订单号查看日志: cat /---/---/xxxx20190908.log | grep C52918588112261 -C 5 ...
- 关于微信小程序
1.设置了tabBar的页面,好像用navigator跳不过去.
- c#中的位运算
&与 全为1才是1 |或 全为0才是0 !非 两边相同时为1,不同时为0 ~取反 0变1,1变0,包括符号位 >>右移 溢出舍掉,正数补0,负数补1,移动n位:原数 / 2 ...
- 利用python装饰器为字符串添加,HTML标签
# 为字符串添加HTML标签 import time def zhuang(fun): def zhaung_1(*args, **kargs): # time.sleep(1) html_str = ...
- pyodbc 一些内容
如果表格里是空的,读出来是会变为None,所以用是否等于None来判断内容是否为空.
- c++11 lambda简录
本文为转载,详情请观看原文连接 或许,Lambda 表达式算得上是 C++ 11 新增特性中最激动人心的一个.这个全新的特性听起来很深奥,但却是很多其他语言早已提供(比如 C#)或者即将提供(比如 J ...
- Flink架构(三)- 事件-时间(Event-Time)处理
3. 事件-时间(Event-Time)处理 在“时间语义”中,我们强调了在流处理应用中时间语义的重要性,并解释了处理时间与事件时间的不同点.处理时间较好理解,因为它基于本地机器的时间,它产生的是有点 ...
- 【PAT甲级】1114 Family Property (25分)(并查集)
题意: 输入一个正整数N(<=10000),接着输入N行每行包括一个人的ID和他双亲的ID以及他的孩子数量和孩子们的ID(四位整数包含前导零),还有他所拥有的房产数量和房产面积.输出一共有多少个 ...
- android底部导航栏实现
第一种用radiobutton实现 https://wizardforcel.gitbooks.io/w3school-android/content/75.html 布局文件,使用radiogrou ...
- 数学算法(一):快速求斐波那契数第n项通过黄金分割率公式
有一个固定的数学公式= =,不知道的话显然没法应用 首先黄金分割率接近于这个公式, (以下为黄金分割率与斐波那契的关系,可跳过) 通过斐波那契数列公式 两边同时除以 得: (1) 注意后一项比前一项接 ...