Codeforces 166B - Polygon (判断凸包位置关系)
Codeforces Round #113 (Div. 2)
题目链接:Polygons
You've got another geometrical task. You are given two non-degenerate polygons \(A\) and \(B\) as vertex coordinates. Polygon \(A\) is strictly convex. Polygon \(B\) is an arbitrary polygon without any self-intersections and self-touches. The vertices of both polygons are given in the clockwise order. For each polygon no three consecutively following vertices are located on the same straight line.
Your task is to check whether polygon \(B\) is positioned strictly inside polygon \(A\). It means that any point of polygon \(B\) should be strictly inside polygon \(A\). "Strictly" means that the vertex of polygon \(B\) cannot lie on the side of the polygon \(A\).
Input
The first line contains the only integer \(n (3 \le n \le 10^5)\) — the number of vertices of polygon \(A\). Then \(n\) lines contain pairs of integers \(x_i, y_i (|x_i|, |y_i| \le 10^9)\) — coordinates of the i-th vertex of polygon \(A\). The vertices are given in the clockwise order.
The next line contains a single integer \(m (3 \le m \le 2·10^4)\) — the number of vertices of polygon \(B\). Then following \(m\) lines contain pairs of integers \(x_j, y_j (|x_j|, |y_j| \le 10^9)\) — the coordinates of the \(j\)-th vertex of polygon \(B\). The vertices are given in the clockwise order.
The coordinates of the polygon's vertices are separated by a single space. It is guaranteed that polygons \(A\) and \(B\) are non-degenerate, that polygon \(A\) is strictly convex, that polygon \(B\) has no self-intersections and self-touches and also for each polygon no three consecutively following vertices are located on the same straight line.
Output
Print on the only line the answer to the problem — if polygon \(B\) is strictly inside polygon \(A\), print "YES", otherwise print "NO" (without the quotes).
Examples
input
6
-2 1
0 3
3 3
4 1
3 -2
2 -2
4
0 1
2 2
3 1
1 0
output
YES
input
5
1 2
4 2
3 -3
-2 -2
-2 1
4
0 1
1 2
4 1
2 -1
output
NO
input
5
-1 2
2 3
4 1
3 -2
0 -3
5
1 0
1 1
3 1
5 -1
2 -1
output
NO
Solution
题意
给定两个凸包 \(A\) 和 \(B\)。判断凸包 \(B\) 是否严格在凸包 \(A\) 内。
题解
对凸包 \(A\) 和 \(B\) 的所有点构造凸包,判断该凸包是否等于凸包 \(A\)。若相等,则凸包 \(B\) 严格在凸包 \(A\) 内。
Code
#include <bits/stdc++.h>
using namespace std;
const double eps = 1e-8;
const double pi = acos(-1.0);
int dcmp(double x) {
if (fabs(x) <= eps)
return 0;
return x > 0 ? 1 : -1;
}
class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
Point operator+(Point a) {
return Point(a.x + x, a.y + y);
}
Point operator-(Point a) {
return Point(x - a.x, y - a.y);
}
bool operator<(const Point &a) const {
if (x == a.x)
return y < a.y;
return x < a.x;
}
bool operator==(const Point &a) const {
if (fabs(x - a.x) < eps && fabs(y - a.y) < eps)
return 1;
return 0;
}
bool operator!=(const Point &a) const {
if ((*this) == a)
return 0;
return 1;
}
double length() {
return sqrt(x * x + y * y);
}
};
typedef Point Vector;
double cross(Vector a, Vector b) {
return a.x * b.y - a.y * b.x;
}
double dot(Vector a, Vector b) {
return a.x * b.x + a.y * b.y;
}
bool isclock(Point p0, Point p1, Point p2) {
Vector a = p1 - p0;
Vector b = p2 - p0;
if (dcmp(cross(a, b)) <= 0) // 为了让凸包边上可以有点
return true;
return false;
}
double getDistance(Point a, Point b) {
return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
}
typedef vector<Point> Polygon;
Polygon Andrew(Polygon s) {
Polygon u, l;
if(s.size() < 3) return s;
sort(s.begin(), s.end());
u.push_back(s[0]);
u.push_back(s[1]);
l.push_back(s[s.size() - 1]);
l.push_back(s[s.size() - 2]);
for(int i = 2 ; i < s.size() ; ++i) {
for(int n = u.size() ; n >= 2 && !isclock(u[n - 2], u[n - 1], s[i]); --n) {
u.pop_back();
}
u.push_back(s[i]);
}
for(int i = s.size() - 3 ; i >= 0 ; --i) {
for(int n = l.size() ; n >=2 && !isclock(l[n-2],l[n-1],s[i]); --n) {
l.pop_back();
}
l.push_back(s[i]);
}
for(int i = 1 ; i < u.size() - 1 ; i++) l.push_back(u[i]);
return l;
}
// 判断点在线段上
bool OnSegment(Point p, Point a1, Point a2) {
return dcmp(cross(a1 - p, a2 - p)) == 0 && dcmp(dot(a1 - p, a2 - p)) < 0;
}
// 判断点在凸包内
int isPointInPolygon(Point p, vector<Point> s) {
int wn = 0, cc = s.size();
for (int i = 0; i < cc; i++) {
Point p1 = s[i];
Point p2 = s[(i + 1) % cc];
if (p1 == p || p2 == p || OnSegment(p, p1, p2)) return -1;
int k = dcmp(cross(p2 - p1, p - p1));
int d1 = dcmp(p1.y - p.y);
int d2 = dcmp(p2.y - p.y);
if (k > 0 && d1 <= 0 && d2 > 0) wn++;
if (k < 0 && d2 <= 0 && d1 > 0) wn--;
}
if (wn != 0) return 1;
return 0;
}
int main() {
Polygon A, B;
int n;
scanf("%d", &n);
for (int i = 0; i < n; ++i) {
double x, y;
scanf("%lf%lf", &x, &y);
A.push_back(Point(x, y));
B.push_back(Point(x, y));
}
scanf("%d", &n);
for (int i = 0; i < n; ++i) {
double x, y;
scanf("%lf%lf", &x, &y);
B.push_back(Point(x, y));
}
A = Andrew(A);
B = Andrew(B);
if(A.size() != B.size()) {
printf("NO\n");
return 0;
}
int flag = 1;
sort(A.begin(), A.end());
sort(B.begin(), B.end());
for(int i = 0; i < A.size(); ++i) {
if(A[i] != B[i]) {
flag = 0;
break;
}
}
if(flag) {
printf("YES\n");
} else {
printf("NO\n");
}
return 0;
}
Codeforces 166B - Polygon (判断凸包位置关系)的更多相关文章
- JS魔法堂:判断节点位置关系
一.前言 在polyfill querySelectorAll 和写弹出窗时都需要判断两个节点间的位置关系,通过jQuery我们可以轻松搞定,但原生JS呢?下面我将整理各种判断方法,以供日后查阅. 二 ...
- POJ 1269 Intersecting Lines (判断直线位置关系)
题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a li ...
- Cupid's Arrow---hdu1756(判断点与多边形的位置关系 模板)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1756 题意:中文题,套模板即可: /* 射线法:判断一个点是在多边形内部,边上还是在外部,时间复杂度为 ...
- LightOj1190 - Sleepwalking(判断点与多边形的位置关系--射线法模板)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1190 题意:给你一个多边形含有n个点:然后又m个查询,每次判断点(x, y)是否在多边 ...
- 判断两条直线的位置关系 POJ 1269 Intersecting Lines
两条直线可能有三种关系:1.共线 2.平行(不包括共线) 3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...
- Intersecting Lines (计算几何基础+判断两直线的位置关系)
题目链接:http://poj.org/problem?id=1269 题面: Description We all know that a pair of distinct points on a ...
- poj 1269 判断直线的位置关系
题目链接 题意 判断两条直线的位置关系,重合/平行/相交(求交点). 直线以其上两点的形式给出(点坐标为整点). 思路 写出直线的一般式方程(用\(gcd\)化为最简), 计算\(\begin{vma ...
- luogu 1355 神秘大三角 判断点和三角形的位置关系 面积法 叉积法
题目链接 题目描述 判断一个点与已知三角形的位置关系. 输入输出格式 输入格式: 前三行:每行一个坐标,表示该三角形的三个顶点 第四行:一个点的坐标,试判断该点与前三个点围成三角形的位置关系 (详见样 ...
- 叉积_判断点与三角形的位置关系 P1355 神秘大三角
题目描述 判断一个点与已知三角形的位置关系. 输入输出格式 输入格式: 前三行:每行一个坐标,表示该三角形的三个顶点 第四行:一个点的坐标,试判断该点与前三个点围成三角形的位置关系 (详见样例) 所有 ...
随机推荐
- Python每日一题 001
Github地址:https://github.com/Yixiaohan/show-me-the-code Talk is Cheap, show me the code. --Linus Torv ...
- Delphi GDI+ 安装方法
[转]Delphi GDI+ 安装方法转自:万一博客(http://www.cnblogs.com/del/)GDI+ 是 Windows 的一个函数库, 来自 Windows\System32\GD ...
- Windows注册表的学习
什么是注册表 注册表是Windows在Win95/98系统开始引入的一种核心数据库,里面存放着各类的配置信息.参数等.直接控制着系统的启动.硬件的装载以及Winodws程序的运行 手册表的功能 记录用 ...
- 替换war包中的文件
原文:https://blog.csdn.net/wuawua1/article/details/53906700 1.如果要替换的文件直接在war包的根目录(一级目录)下,直接使用jar uvf命令 ...
- PE代码段中的数据
PE代码段中可能包含一些数据,比如 optional header中的data directory会索引到一些数据,比如import/export table等等: 还有一些jump table/sw ...
- 2019河北省大学生程序设计竞赛(重现赛)J-舔狗 (拓扑排序)
题目链接:https://ac.nowcoder.com/acm/contest/903/J 题意:给你 n 个舔狗和他喜欢的人,让你俩俩配对(只能和喜欢它的和它喜欢的),求剩下的单身狗数量. 思路: ...
- Git 学习第二天(一)
继续昨天的学习. 回顾一下,昨天我们安装了git 并创建了登录名及邮箱,还向git仓库提交了一个readme.txt的文本文件 下面,我们来修改下这个文件,将内容改为 Git is a distrib ...
- Django完成常用四大功能
返回主目录:Django框架 内容目录: 1.pycharm连接数据库及相应操作 2.手撸登录注册编辑删除 2.1 登录.注册 2.2 ORM简单操作 2.3 编辑.删除 3.完整代码 一.pycha ...
- selenium 自动下载文件
#coding=utf-8 from selenium import webdriver #实例化一个火狐配置文件 fp = webdriver.FirefoxProfile() #设置各项参数,参数 ...
- QueryList.class.php很方便的一个采集数据工具。
QueryList.class.php是一个非常方面的网站数据采集工具.可以在这个上面采集别的网站数据. /*调用开始*/ require 'QueryList.class.php';header(' ...