Codeforces Round #113 (Div. 2)

题目链接:Polygons

You've got another geometrical task. You are given two non-degenerate polygons \(A\) and \(B\) as vertex coordinates. Polygon \(A\) is strictly convex. Polygon \(B\) is an arbitrary polygon without any self-intersections and self-touches. The vertices of both polygons are given in the clockwise order. For each polygon no three consecutively following vertices are located on the same straight line.

Your task is to check whether polygon \(B\) is positioned strictly inside polygon \(A\). It means that any point of polygon \(B\) should be strictly inside polygon \(A\). "Strictly" means that the vertex of polygon \(B\) cannot lie on the side of the polygon \(A\).

Input

The first line contains the only integer \(n (3 \le n \le 10^5)\) — the number of vertices of polygon \(A\). Then \(n\) lines contain pairs of integers \(x_i, y_i (|x_i|, |y_i| \le 10^9)\) — coordinates of the i-th vertex of polygon \(A\). The vertices are given in the clockwise order.

The next line contains a single integer \(m (3 \le m \le 2·10^4)\) — the number of vertices of polygon \(B\). Then following \(m\) lines contain pairs of integers \(x_j, y_j (|x_j|, |y_j| \le 10^9)\) — the coordinates of the \(j\)-th vertex of polygon \(B\). The vertices are given in the clockwise order.

The coordinates of the polygon's vertices are separated by a single space. It is guaranteed that polygons \(A\) and \(B\) are non-degenerate, that polygon \(A\) is strictly convex, that polygon \(B\) has no self-intersections and self-touches and also for each polygon no three consecutively following vertices are located on the same straight line.

Output

Print on the only line the answer to the problem — if polygon \(B\) is strictly inside polygon \(A\), print "YES", otherwise print "NO" (without the quotes).

Examples

input

6
-2 1
0 3
3 3
4 1
3 -2
2 -2
4
0 1
2 2
3 1
1 0

output

YES

input

5
1 2
4 2
3 -3
-2 -2
-2 1
4
0 1
1 2
4 1
2 -1

output

NO

input

5
-1 2
2 3
4 1
3 -2
0 -3
5
1 0
1 1
3 1
5 -1
2 -1

output

NO

Solution

题意

给定两个凸包 \(A\) 和 \(B\)。判断凸包 \(B\) 是否严格在凸包 \(A\) 内。

题解

对凸包 \(A\) 和 \(B\) 的所有点构造凸包,判断该凸包是否等于凸包 \(A\)。若相等,则凸包 \(B\) 严格在凸包 \(A\) 内。

Code

#include <bits/stdc++.h>
using namespace std;
const double eps = 1e-8;
const double pi = acos(-1.0); int dcmp(double x) {
if (fabs(x) <= eps)
return 0;
return x > 0 ? 1 : -1;
} class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
Point operator+(Point a) {
return Point(a.x + x, a.y + y);
}
Point operator-(Point a) {
return Point(x - a.x, y - a.y);
}
bool operator<(const Point &a) const {
if (x == a.x)
return y < a.y;
return x < a.x;
}
bool operator==(const Point &a) const {
if (fabs(x - a.x) < eps && fabs(y - a.y) < eps)
return 1;
return 0;
}
bool operator!=(const Point &a) const {
if ((*this) == a)
return 0;
return 1;
}
double length() {
return sqrt(x * x + y * y);
}
}; typedef Point Vector; double cross(Vector a, Vector b) {
return a.x * b.y - a.y * b.x;
} double dot(Vector a, Vector b) {
return a.x * b.x + a.y * b.y;
} bool isclock(Point p0, Point p1, Point p2) {
Vector a = p1 - p0;
Vector b = p2 - p0;
if (dcmp(cross(a, b)) <= 0) // 为了让凸包边上可以有点
return true;
return false;
} double getDistance(Point a, Point b) {
return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
} typedef vector<Point> Polygon;
Polygon Andrew(Polygon s) {
Polygon u, l;
if(s.size() < 3) return s;
sort(s.begin(), s.end());
u.push_back(s[0]);
u.push_back(s[1]);
l.push_back(s[s.size() - 1]);
l.push_back(s[s.size() - 2]);
for(int i = 2 ; i < s.size() ; ++i) {
for(int n = u.size() ; n >= 2 && !isclock(u[n - 2], u[n - 1], s[i]); --n) {
u.pop_back();
}
u.push_back(s[i]);
}
for(int i = s.size() - 3 ; i >= 0 ; --i) {
for(int n = l.size() ; n >=2 && !isclock(l[n-2],l[n-1],s[i]); --n) {
l.pop_back();
}
l.push_back(s[i]);
}
for(int i = 1 ; i < u.size() - 1 ; i++) l.push_back(u[i]);
return l;
} // 判断点在线段上
bool OnSegment(Point p, Point a1, Point a2) {
return dcmp(cross(a1 - p, a2 - p)) == 0 && dcmp(dot(a1 - p, a2 - p)) < 0;
} // 判断点在凸包内
int isPointInPolygon(Point p, vector<Point> s) {
int wn = 0, cc = s.size();
for (int i = 0; i < cc; i++) {
Point p1 = s[i];
Point p2 = s[(i + 1) % cc];
if (p1 == p || p2 == p || OnSegment(p, p1, p2)) return -1;
int k = dcmp(cross(p2 - p1, p - p1));
int d1 = dcmp(p1.y - p.y);
int d2 = dcmp(p2.y - p.y);
if (k > 0 && d1 <= 0 && d2 > 0) wn++;
if (k < 0 && d2 <= 0 && d1 > 0) wn--;
}
if (wn != 0) return 1;
return 0;
} int main() {
Polygon A, B;
int n;
scanf("%d", &n);
for (int i = 0; i < n; ++i) {
double x, y;
scanf("%lf%lf", &x, &y);
A.push_back(Point(x, y));
B.push_back(Point(x, y));
}
scanf("%d", &n);
for (int i = 0; i < n; ++i) {
double x, y;
scanf("%lf%lf", &x, &y);
B.push_back(Point(x, y));
}
A = Andrew(A);
B = Andrew(B);
if(A.size() != B.size()) {
printf("NO\n");
return 0;
}
int flag = 1;
sort(A.begin(), A.end());
sort(B.begin(), B.end());
for(int i = 0; i < A.size(); ++i) {
if(A[i] != B[i]) {
flag = 0;
break;
}
}
if(flag) {
printf("YES\n");
} else {
printf("NO\n");
}
return 0;
}

Codeforces 166B - Polygon (判断凸包位置关系)的更多相关文章

  1. JS魔法堂:判断节点位置关系

    一.前言 在polyfill querySelectorAll 和写弹出窗时都需要判断两个节点间的位置关系,通过jQuery我们可以轻松搞定,但原生JS呢?下面我将整理各种判断方法,以供日后查阅. 二 ...

  2. POJ 1269 Intersecting Lines (判断直线位置关系)

    题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a li ...

  3. Cupid's Arrow---hdu1756(判断点与多边形的位置关系 模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1756 题意:中文题,套模板即可: /* 射线法:判断一个点是在多边形内部,边上还是在外部,时间复杂度为 ...

  4. LightOj1190 - Sleepwalking(判断点与多边形的位置关系--射线法模板)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1190 题意:给你一个多边形含有n个点:然后又m个查询,每次判断点(x, y)是否在多边 ...

  5. 判断两条直线的位置关系 POJ 1269 Intersecting Lines

    两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...

  6. Intersecting Lines (计算几何基础+判断两直线的位置关系)

    题目链接:http://poj.org/problem?id=1269 题面: Description We all know that a pair of distinct points on a ...

  7. poj 1269 判断直线的位置关系

    题目链接 题意 判断两条直线的位置关系,重合/平行/相交(求交点). 直线以其上两点的形式给出(点坐标为整点). 思路 写出直线的一般式方程(用\(gcd\)化为最简), 计算\(\begin{vma ...

  8. luogu 1355 神秘大三角 判断点和三角形的位置关系 面积法 叉积法

    题目链接 题目描述 判断一个点与已知三角形的位置关系. 输入输出格式 输入格式: 前三行:每行一个坐标,表示该三角形的三个顶点 第四行:一个点的坐标,试判断该点与前三个点围成三角形的位置关系 (详见样 ...

  9. 叉积_判断点与三角形的位置关系 P1355 神秘大三角

    题目描述 判断一个点与已知三角形的位置关系. 输入输出格式 输入格式: 前三行:每行一个坐标,表示该三角形的三个顶点 第四行:一个点的坐标,试判断该点与前三个点围成三角形的位置关系 (详见样例) 所有 ...

随机推荐

  1. (转)OpenFire源码学习之十三:消息处理

    转:http://blog.csdn.net/huwenfeng_2011/article/details/43417817 消息处理流程总揽(该图来源于互联网,图片很大,不过类容还是挺清楚的.不方便 ...

  2. npm install 超时 国内 切换源; npm ERR! code ELIFECYCLE;

    install 超时 查看npm源地址 npm config get registry #http://registry.npmjs.org 为国外镜像地址 设置阿里云镜像 npm config se ...

  3. CSS:CSS Display(显示) 与 Visibility(可见性)

    ylbtech-CSS:CSS Display(显示) 与 Visibility(可见性) 1.返回顶部 1. CSS Display(显示) 与 Visibility(可见性) display属性设 ...

  4. C++——数据类型选择

    1.数据类型选择推荐 2.数据类型相关代码注意 2.1 循环的int型注意是int 还是unsigned unsigned a=-1;(a=4294967295)

  5. pytest--fixture之参数化

    场景:测试用例执行时,有的用例需要登陆才能执行,有些用例 不需要登陆.setup和teardown无法满足.fixture可以.默认 scope(范围)function • 步骤: 1. 导入pyte ...

  6. json转字符串,json转list,json转pojo的工具类

    package com.loveshop.util; import java.util.List; import com.fasterxml.jackson.core.JsonProcessingEx ...

  7. 按钮与js事件先后顺序

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  8. Vuejs input 和 textarea 元素中使用 v-model 实现双向数据绑定

    demo <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <titl ...

  9. vue 学习四 了解组件

    1组件的注册 全局注册 import Vue from 'vue'; import com from './component1'; Vue.component("com_name" ...

  10. lterator遍历

    iterator是一种接口机制,为各种不同的数据结构提供统一的访问机制 作用: 1.为各种数据结构,提供一个统一的.简便的访问接口: 2.使得数据结构的成员能够按某种次序排列 3.ES6创造了一种新的 ...