import tensorflow as tf
from numpy.random import RandomState batch_size = 8
x = tf.placeholder(tf.float32, shape=(None, 2), name="x-input")
y_ = tf.placeholder(tf.float32, shape=(None, 1), name='y-input')
w1= tf.Variable(tf.random_normal([2, 1], stddev=1, seed=1))
y = tf.matmul(x, w1) # 定义损失函数使得预测少了的损失大,于是模型应该偏向多的方向预测。
loss_less = 10
loss_more = 1
loss = tf.reduce_sum(tf.where(tf.greater(y, y_), (y - y_) * loss_more, (y_ - y) * loss_less))
train_step = tf.train.AdamOptimizer(0.001).minimize(loss) rdm = RandomState(1)
X = rdm.rand(128,2)
Y = [[x1+x2+(rdm.rand()/10.0-0.05)] for (x1, x2) in X] with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
STEPS = 5000
for i in range(STEPS):
start = (i*batch_size) % 128
end = (i*batch_size) % 128 + batch_size
sess.run(train_step, feed_dict={x: X[start:end], y_: Y[start:end]})
if i % 1000 == 0:
print("After %d training step(s), w1 is: " % (i))
print sess.run(w1), "\n"
print "Final w1 is: \n", sess.run(w1)

loss_less = 1
loss_more = 10
loss = tf.reduce_sum(tf.where(tf.greater(y, y_), (y - y_) * loss_more, (y_ - y) * loss_less))
train_step = tf.train.AdamOptimizer(0.001).minimize(loss) with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
STEPS = 5000
for i in range(STEPS):
start = (i*batch_size) % 128
end = (i*batch_size) % 128 + batch_size
sess.run(train_step, feed_dict={x: X[start:end], y_: Y[start:end]})
if i % 1000 == 0:
print("After %d training step(s), w1 is: " % (i))
print sess.run(w1), "\n"
print "Final w1 is: \n", sess.run(w1)

loss = tf.losses.mean_squared_error(y, y_)
train_step = tf.train.AdamOptimizer(0.001).minimize(loss) with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
STEPS = 5000
for i in range(STEPS):
start = (i*batch_size) % 128
end = (i*batch_size) % 128 + batch_size
sess.run(train_step, feed_dict={x: X[start:end], y_: Y[start:end]})
if i % 1000 == 0:
print("After %d training step(s), w1 is: " % (i))
print sess.run(w1), "\n"
print "Final w1 is: \n", sess.run(w1)

吴裕雄 python 神经网络——TensorFlow 自定义损失函数的更多相关文章

  1. 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集

    #加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...

  2. 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集

    import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...

  3. 吴裕雄 python 神经网络——TensorFlow 训练过程的可视化 TensorBoard的应用

    #训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mni ...

  4. 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集

    import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...

  5. 吴裕雄 python 神经网络——TensorFlow 数据集高层操作

    import tempfile import tensorflow as tf train_files = tf.train.match_filenames_once("E:\\output ...

  6. 吴裕雄 python 神经网络——TensorFlow 输入数据处理框架

    import tensorflow as tf files = tf.train.match_filenames_once("E:\\MNIST_data\\output.tfrecords ...

  7. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(2)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  8. 吴裕雄 python 神经网络——TensorFlow 花瓣识别2

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  9. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用滑动平均

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

随机推荐

  1. [linux] Ubuntu18.04 安装mysql密码不对

    安装 安装过程可以说是非常简单了 sudo apt-get install mysql-server 然后看看有没有启动成功 systemctl status mysql 看到状态是 running就 ...

  2. AOP使用

    package com.googosoft.db.aspect; import org.aspectj.lang.ProceedingJoinPoint; import org.aspectj.lan ...

  3. nginx-vue项目在window下的部署

    主机->操作系统->window(.net)/Linux->tomcat/nginx(软件反向代理) 1.vue项目打包到dist文件夹(之后把dist文件夹放到服务器就可以了) n ...

  4. python的os库

    os库(operating system,提供操作系统函数) 1. __file__是什么? ans:当前文件的名字. 例如r.py内容如下 import os if __name__ == &quo ...

  5. 转载:Bass management

    https://kenrockwell.com/audio/bass-management.htm https://www.axiomaudio.com/blog/bassmanagement htt ...

  6. leetcode78.子集➕90.子集2

    78子集 dfs dfs1: 和全排列的区别就是对于当前考察的索引i,全排列如果不取i,之后还要取i,所以需要一个visited数组用来记录.对于子集问题如果不取i,之后也不必再取i. 单纯递归回溯 ...

  7. php提供下载服务实例

    两个步骤:1,通过header头信息告诉浏览器,我给你回应的是一个附件请接收 2,通过php读取下载的文件的内容并返回 前端 <!DOCTYPE html> <html lang=& ...

  8. Winform 随机抽奖小程序

    效果图: 主要代码: Form1.cs using System; using System.Drawing; using System.IO; using System.Runtime.Intero ...

  9. 【音乐欣赏】《Siren》 - The Chainsmokers / Aazar

    曲名:Siren 作者:The Chainsmokers . Aazar [00:00.00] 作曲 : Alex Pall/Andrew Taggart/Alexis Duvivier [00:01 ...

  10. Linux 下使用 ffmpeg 大批量合并 ts 文件, mp4切割文件为m3u8

    见范例 ffmpeg -i "concat:file001.ts|file002.ts|file003.ts|file004.ts......n.ts" -acodec copy ...