using System;

 using System.Collections.Generic;

 using System.ComponentModel;

 using System.Data;

 using System.Drawing;

 using System.Linq;

 using System.Text;

 using System.Windows.Forms;

 namespace doBezier

 {

     public partial class Form1 : Form

     {

         PointF[] p = new PointF[];   //存储控制点坐标

         int count;                    //记录已输入的控制点个数

         Graphics g;                  //GDI 对象

         public Form1()

         {

             InitializeComponent();

             g = CreateGraphics();

             count = ;

         }

         private void Form1_Load(object sender, EventArgs e)

         {

         }

         private void Form1_MouseClick(object sender, MouseEventArgs e)

         {

             if (e.Button == MouseButtons.Left)

             {

                 if (count == )      //如果输入的是第一个点,先清空窗口

                     g.Clear(BackColor);

                 g.FillRectangle(Brushes.Red, e.X - , e.Y - , , );  //输出一个标记

                 p[count] = new PointF(e.X, e.Y);                 //存储

                 count ;                                    //记录输入控制点个数

                 return;

             }

             else

             {

                 PointF q1 = new PointF();

                 PointF q2 = new PointF();

                 double u;

                 for (int i = ; i <= ; i )//生成100个点并连成折线

                 {

                     u = (double)i / 100.0;

                     if (i == )

                     {

                         q1 = deCasteljau(u);

                     }

                     else

                     {

                         q2 = deCasteljau(u);

                         g.DrawLine(Pens.Black, q1, q2);

                         q1.X = q2.X;

                         q1.Y = q2.Y;

                     }

                 }

                 count = ;

                 return;

             }

         }

         PointF deCasteljau(double u)   //曲线参数为u,函数返回一个二维点 

         {

             int i, k;

             //以下将控制点数组p[],复制到数组q[]

             PointF[] q = new PointF[];

             for (i = ; i < count; i )

             {

                 q[i].X = p[i].X;

                 q[i].Y = p[i].Y;

             }

             //以下用de Casteljau割角算法计算bezier曲线上参数点u对应的x,y,

             //计算完成后,结果存储在q[0]

             for (k = ; k < count; k )

                 for (i = ; i < count - k; i )

                 {

                     q[i].X = (float)(1.0 - u) * q[i].X   (float)u * q[i   ].X;

                     q[i].Y = (float)(1.0 - u) * q[i].Y   (float)u * q[i   ].Y;

                 }

             return new PointF(q[].X, q[].Y);

         }

         private void Form1_Paint(object sender, PaintEventArgs e)

         {

         }

     }

 }

C# 实现Bezier曲线(vs2008)的更多相关文章

  1. Bezier曲线的原理 及 二次Bezier曲线的实现

    原文地址:http://blog.csdn.net/jimi36/article/details/7792103 Bezier曲线的原理 Bezier曲线是应用于二维图形的曲线.曲线由顶点和控制点组成 ...

  2. [摘抄] Bezier曲线、B样条和NURBS

    Bezier曲线.B样条和NURBS,NURBS是Non-Uniform Rational B-Splines的缩写,都是根据控制点来生成曲线的,那么他们有什么区别了?简单来说,就是: Bezier曲 ...

  3. 连续bezier曲线的实现

    需求场景 一系列的坐标点,划出一条平滑的曲线 3次Bezier曲线 基本上大部分绘图工具都实现了3次Bezier曲线,4个点确定一条3次Bezier曲线.以html5中的canvas为例 let ct ...

  4. 7.5.5编程实例-Bezier曲线曲面绘制

    (a)Bezier曲线                         (b) Bezier曲面 1. 绘制Bezier曲线 #include <GL/glut.h> GLfloat ct ...

  5. 实验6 Bezier曲线生成

    1.实验目的: 了解曲线的生成原理,掌握几种常见的曲线生成算法,利用VC+OpenGL实现Bezier曲线生成算法. 2.实验内容: (1) 结合示范代码了解曲线生成原理与算法实现,尤其是Bezier ...

  6. 简单而粗暴的方法画任意阶数Bezier曲线

    简单而粗暴的方法画任意阶数Bezier曲线 虽然说是任意阶数,但是嘞,算法原理是可以到任意阶数,计算机大概到100多阶就会溢出了 Bezier曲线介绍] [本文代码] 背景 在windows的Open ...

  7. python bezier 曲线

    1.手写bezier公式,生成bezier代码, 如果给的点数过多,则会生成一半bezier曲线,剩下的一半就需要进行拼接: import numpy as np import matplotlib. ...

  8. iOS Bezier曲线

    https://www.jianshu.com/p/2316f0d9db65 1. Bezier曲线 相关软件:PaintCode:可以直接画图,软件根据图像生产Bezier曲线 相关概念:UIBez ...

  9. Bezier曲线的实现——de Casteljau算法

    这学期同时上了计算机图形学和计算方法两门课,学到这部分的时候突然觉得de Casteljau递推算法特别像牛顿插值,尤其递推计算步骤很像牛顿差商表. 一开始用伯恩斯坦多项式计算Bezier曲线的时候, ...

随机推荐

  1. intval()和int()

    int intval ( mixed $var [, int $base ] )    通过使用特定的进制转换(默认是十进制),参数base表示进制,只有当var是字符串时,base才会有意义,表示按 ...

  2. React 支持JS

    <!DOCTYPE html><html><head lang="en"> <meta charset="UTF-8" ...

  3. 《使用python进行数据分析》

    第一 环境搭建 1. 使用pip安装pandas, numpy, scipy, matplotlib, ipython 注意:首先需要安装venv(不然在下面的安装过程中会提示很多的错误,使用pych ...

  4. 实现CSS等分布局的5种方式

    前面的话 等分布局是指子元素平均分配父元素宽度的布局方式,本文将介绍实现等分布局的5种方式 float [思路一]float 缺点:结构和样式存在耦合性,IE7-浏览器下对宽度百分比取值存在四舍五入的 ...

  5. ceph PG数量调整/PG的状态说明

    优化: PG Number PG和PGP数量一定要根据OSD的数量进行调整,计算公式如下,但是最后算出的结果一定要接近或者等于一个2的指数.调整PGP不会引起PG内的对象的分裂,但是会引起PG的分布的 ...

  6. VMware下Mac系统自适应屏幕

    1.下载VMwareTool工具镜像 链接:https://pan.baidu.com/s/1gvXBdzrwYyOEl6yhJurUig 提取码:s1po 2.打开Mac系统,推出DVD 2.设置连 ...

  7. POJ1942-Paths On a Grid-组合数学

    从n+m步中挑选min(n,m)步向上走,剩下的就是向下走. 求解n+mCmin(n,m)时,要一边计算一边约分. #include <cstdio> #include <algor ...

  8. String的实例化与static final修饰符

    String两种实例化方式 一种是通过双引号直接赋值的方式,另外一种是使用标准的new调用构造方法完成实例化.如下: String str = "abcd"; String str ...

  9. 架构师成长之路2.3-PXE+Kickstart无人值守大量部署Linux

    点击返回架构师成长之路 架构师成长之路2.3-PXE+Kickstart无人值守大量部署Linux 所谓的无人值守,就是自动应答,当安装过程中需要人机交互提供某些选项的答案时(如如何分区),自动应答文 ...

  10. SQLITE在IIS中使用问题

    在WEB中使用这个数据库时,System.Data.SQLite.dll 这个经常会出问题 主要是版本问题,sqlite.DLL的版本要和Framework版本匹配 这是下载地址 http://www ...