题目大意:一个竹竿长度为p,它的score值就是比p长度小且与且与p互质的数字总数,比如9有1,2,4,5,7,8这六个数那它的score就是6。给你T组数据,每组n个学生,每个学生都有一个幸运数字,求出要求买n个竹子每个竹子的score都要大于或等于该学生的幸运数字,每个竹竿长度就是花费,求最小花费。

解题思路:其实这题就是考察欧拉函数性质的应用,我们先来了解一下欧拉函数。以下内容转自:http://blog.csdn.net/leolin_/article/details/6642096

欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n) 。

通式:φ(x)=x*(1-1/p1)*(1-1/p2)*(1-1/p3)*(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数就是1本身)。

对于质数p,φ(p) = p - 1。注意φ(1)=1.

欧拉定理:对于互质的正整数a和n,有aφ(n) ≡ 1 mod n。

欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。

若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质。

特殊性质:当n为奇数时,φ(2n)=φ(n)

欧拉函数还有这样的性质:

设a为N的质因数,若(N % a == 0 && (N / a) % a == 0) 则有E(N)=E(N / a) * a;若(N % a == 0 && (N / a) % a != 0) 则有:E(N) = E(N / a) * (a - 1)。

看完上面的内容,我们就知道一根长度为p的竹竿它的score其实就是欧拉函数值φ(p)。又因为一个素数p的φ(p)=p-1,所以我们只需要从x+1(x是幸运数字)开始找第一个出现的素数,那就是最小花费。

代码:

 #include<iostream>
using namespace std;
typedef long long ll;
const int N=1e7+; bool prime[N]; void is_prime(){
for(int i=;i<N;i++){
prime[i]=true;
}
for(int i=;i*i<N;i++){
if(prime[i]){
for(int j=i*i;j<=N;j+=i){
prime[j]=false;
}
}
}
} int main(){
is_prime();
int t,n;
cin>>t;
for(int i=;i<=t;i++){
cin>>n;
ll sum=;
for(int j=;j<=n;j++){
int x;
cin>>x;
for(int k=x+;;k++){
if(prime[k]){
sum+=k;
break;
}
}
}
cout<<"Case "<<i<<": "<<sum<<" Xukha"<<endl;
}
}

LightOJ 1370- Bi-shoe and Phi-shoe (欧拉函数)的更多相关文章

  1. FZU 1759 欧拉函数 降幂公式

    Description   Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000 ...

  2. poj3696 快速幂的优化+欧拉函数+gcd的优化+互质

    这题满满的黑科技orz 题意:给出L,要求求出最小的全部由8组成的数(eg: 8,88,888,8888,88888,.......),且这个数是L的倍数 sol:全部由8组成的数可以这样表示:((1 ...

  3. HDU 4483 Lattice triangle(欧拉函数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4483 题意:给出一个(n+1)*(n+1)的格子.在这个格子中存在多少个三角形? 思路:反着想,所有情 ...

  4. UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)

    题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x ...

  5. 【欧拉函数】【HDU1286】 找新朋友

    找新朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  6. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  7. SPOJ 5152 Brute-force Algorithm EXTREME && HDU 3221 Brute-force Algorithm 快速幂,快速求斐波那契数列,欧拉函数,同余 难度:1

    5152. Brute-force Algorithm EXTREME Problem code: BFALG Please click here to download a PDF version ...

  8. uva 11426 GCD - Extreme (II) (欧拉函数打表)

    题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...

  9. [NOI2010][bzoj2005] 能量采集 [欧拉函数+分块前缀和优化]

    题面: 传送门 思路: 稍微转化一下,可以发现,每个植物到原点连线上植物的数量,等于gcd(x,y)-1,其中xy是植物的横纵坐标 那么我们实际上就是要求2*sigma(gcd(x,y))-n*m了 ...

  10. XMU 1615 刘备闯三国之三顾茅庐(三) 【欧拉函数+快速幂+欧拉定理】

    1615: 刘备闯三国之三顾茅庐(三) Time Limit: 1000 MS  Memory Limit: 128 MBSubmit: 45  Solved: 8[Submit][Status][W ...

随机推荐

  1. Codeforces707Div2

    A Small, but very brave, mouse Brain was not accepted to summer school of young villains. He was ups ...

  2. BZOJ3509 [CodeChef] COUNTARI 【分块 + fft】

    题目链接 BZOJ3509 题解 化一下式子,就是 \[2A[j] = A[i] + A[k]\] 所以我们对一个位置两边的数构成的生成函数相乘即可 但是由于这样做是\(O(n^2logn)\)的,我 ...

  3. 【原创】【1】rich editor系列教程。前期准备,兼容

    [1]前期准备,兼容 索引目录:http://www.cnblogs.com/henryli/p/3439642.html rich editor的原理无非是启用iframe的编辑模式或者div的co ...

  4. angular 有关侦测组件变化的 ChangeDetectorRef 对象

    我们知道,如果我们绑定了组件数据到视图,例如使用 <p>{{content}}</p>,如果我们在组件中改变了content的值,那么视图也会更新为对应的值. angular ...

  5. Httpclient与RestTemplate的比较(比httpClient更优雅的Restful URL访问)

    一.HttpClient (一)HttpClient 客户端 1.HttpClient 是 apache 的开源,需要引入两个包:httpclient-4.2.4.jar 和 httpcore-4.2 ...

  6. 金牌架构师:我们是这样设计APP数据统计产品的

    前言:近期,智能大数据服务商“个推”推出了应用统计产品“个数”,今天我们就和大家来谈一谈个数实时统计与AI数据智能平台整合架构设计. 很多人可能好奇,拥有数百亿SDK的个推,专注消息推送服务多年,现在 ...

  7. 关于C#微信公众号开发的前言说明

    本人是昨天开始接触微信公众号开发的,昨天看一天官方文档,基本上晕乎乎的,刚开始接触这个真的有点困难,特别是C#在这方面的资料不多,不如php java方面的资料全. 所以我准备每天写一点关于C#微信开 ...

  8. VS Code 配置 C/C++ 环境

    写作原因 微软的 VSCode 一直以来为人诟病的一个问题就是对于 C/C++ 工程的编译以及调试支持度有限,配置起来比较复杂,但是 vscode-cpptools 团队经过一段时间的 bug 修复之 ...

  9. CF851 D 枚举 思维

    给出n个数,你可以对每个数把它变为0,或者增加1,分别需要花费x, y.问把所有数的GCD变为不为1的最小花费是多少. n的范围5x1e5,a[i]的范围1e6. 开始想通过枚举最终gcd值,然后通过 ...

  10. 原生JS实现省市区(县)三级联动选择

    原文地址→看过来 写在前面 前段时间写一个关于天气的东西,里面的省市区(县)城市选择让我很头疼,在网上搜索出来大都是借助插件或者第三方库,感觉这样做代码会很重,所以索性就把几种城市选择的方式实现一遍, ...