GAN系列学习(1)——前生今世

DCGAN、WGAN、WGAN-GP、LSGAN、BEGAN原理总结及对比

【Learning Notes】变分自编码器(Variational Auto-Encoder,VAE)

2. GAN的原理:

GAN的主要灵感来源于博弈论中零和博弈的思想,应用到深度学习神经网络上来说,就是通过生成网络G(Generator)和判别网络D(Discriminator)不断博弈,进而使G学习到数据的分布,如果用到图片生成上,则训练完成后,G可以从一段随机数中生成逼真的图像。G, D的主要功能是:

●  G是一个生成式的网络,它接收一个随机的噪声z(随机数),通过这个噪声生成图像

●  D是一个判别网络,判别一张图片是不是“真实的”。它的输入参数是x,x代表一张图片,输出D(x)代表x为真实图片的概率,如果为1,就代表100%是真实的图片,而输出为0,就代表不可能是真实的图片

训练过程中,生成网络G的目标就是尽量生成真实的图片去欺骗判别网络D。而D的目标就是尽量辨别出G生成的假图像和真实的图像。这样,G和D构成了一个动态的“博弈过程”,最终的平衡点即纳什均衡点.

3. GAN的特点:

●  相比较传统的模型,他存在两个不同的网络,而不是单一的网络,并且训练方式采用的是对抗训练方式

●  GAN中G的梯度更新信息来自判别器D,而不是来自数据样本

4. GAN 的优点:

(以下部分摘自ian goodfellow 在Quora的问答)

●  GAN是一种生成式模型,相比较其他生成模型(玻尔兹曼机和GSNs)只用到了反向传播,而不需要复杂的马尔科夫链

●  相比其他所有模型, GAN可以产生更加清晰,真实的样本

●  GAN采用的是一种无监督的学习方式训练,可以被广泛用在无监督学习和半监督学习领域

●  相比于变分自编码器, GANs没有引入任何决定性偏置( deterministic bias),变分方法引入决定性偏置,因为他们优化对数似然的下界,而不是似然度本身,这看起来导致了VAEs生成的实例比GANs更模糊

●  相比VAE, GANs没有变分下界,如果鉴别器训练良好,那么生成器可以完美的学习到训练样本的分布.换句话说,GANs是渐进一致的,但是VAE是有偏差的

●  GAN应用到一些场景上,比如图片风格迁移,超分辨率,图像补全,去噪,避免了损失函数设计的困难,不管三七二十一,只要有一个的基准,直接上判别器,剩下的就交给对抗训练了。

5. GAN的缺点:

●  训练GAN需要达到纳什均衡,有时候可以用梯度下降法做到,有时候做不到.我们还没有找到很好的达到纳什均衡的方法,所以训练GAN相比VAE或者PixelRNN是不稳定的,但我认为在实践中它还是比训练玻尔兹曼机稳定的多

●  GAN不适合处理离散形式的数据,比如文本

●  GAN存在训练不稳定、梯度消失、模式崩溃的问题(目前已解决)

模式崩溃(model collapse)原因

一般出现在GAN训练不稳定的时候,具体表现为生成出来的结果非常差,但是即使加长训练时间后也无法得到很好的改善。

具体原因可以解释如下:GAN采用的是对抗训练的方式,G的梯度更新来自D,所以G生成的好不好,得看D怎么说。具体就是G生成一个样本,交给D去评判,D会输出生成的假样本是真样本的概率(0-1),相当于告诉G生成的样本有多大的真实性,G就会根据这个反馈不断改善自己,提高D输出的概率值。但是如果某一次G生成的样本可能并不是很真实,但是D给出了正确的评价,或者是G生成的结果中一些特征得到了D的认可,这时候G就会认为我输出的正确的,那么接下来我就这样输出肯定D还会给出比较高的评价,实际上G生成的并不怎么样,但是他们两个就这样自我欺骗下去了,导致最终生成结果缺失一些信息,特征不全。

关于梯度消失的问题可以参考郑华滨的令人拍案叫绝的wassertein GAN,里面给出了详细的解释,不过多重复。

局部极小值点

鞍点

为什么GAN中的优化器不常用SGD

1. SGD容易震荡,容易使GAN训练不稳定,

2. GAN的目的是在高维非凸的参数空间中找到纳什均衡点,GAN的纳什均衡点是一个鞍点,但是SGD只会找到局部极小值,因为SGD解决的是一个寻找最小值的问题,GAN是一个博弈问题。

为什么GAN不适合处理文本数据

1. 文本数据相比较图片数据来说是离散的,因为对于文本来说,通常需要将一个词映射为一个高维的向量,最终预测的输出是一个one-hot向量,假设softmax的输出是(0.2,
0.3, 0.1,0.2,0.15,0.05)那么变为onehot是(0,1,0,0,0,0),如果softmax输出是(0.2, 0.25,
0.2, 0.1,0.15,0.1 ),one-hot仍然是(0, 1, 0, 0, 0,
0),所以对于生成器来说,G输出了不同的结果但是D给出了同样的判别结果,并不能将梯度更新信息很好的传递到G中去,所以D最终输出的判别没有意义。

2. 另外就是GAN的损失函数是JS散度,JS散度不适合衡量不想交分布之间的距离。

(WGAN虽然使用wassertein距离代替了JS散度,但是在生成文本上能力还是有限,GAN在生成文本上的应用有seq-GAN,和强化学习结合的产物)

训练GAN的一些技巧

1. 输入规范化到(-1,1)之间,最后一层的激活函数使用tanh(BEGAN除外)

2. 使用wassertein GAN的损失函数,

3. 如果有标签数据的话,尽量使用标签,也有人提出使用反转标签效果很好,另外使用标签平滑,单边标签平滑或者双边标签平滑

4. 使用mini-batch norm, 如果不用batch norm 可以使用instance norm 或者weight norm

5. 避免使用RELU和pooling层,减少稀疏梯度的可能性,可以使用leakrelu激活函数

6. 优化器尽量选择ADAM,学习率不要设置太大,初始1e-4可以参考,另外可以随着训练进行不断缩小学习率,

7. 给D的网络层增加高斯噪声,相当于是一种正则

hello--GAN的更多相关文章

  1. (转) How to Train a GAN? Tips and tricks to make GANs work

    How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...

  2. 不要怂,就是GAN (生成式对抗网络) (一)

    前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...

  3. GAN

    GAN(Generative Adversarial Nets),产生式对抗网络 存在问题: 1.无法表示数据分布 2.速度 3.resolution太小,大了无语义信息 4.无reference 5 ...

  4. 不要怂,就是GAN (生成式对抗网络) (二)

    前面我们了解了 GAN 的原理,下面我们就来用 TensorFlow 搭建 GAN(严格说来是 DCGAN,如无特别说明,本系列文章所说的 GAN 均指 DCGAN),如前面所说,GAN 分为有约束条 ...

  5. 不要怂,就是GAN (生成式对抗网络) (四):训练和测试 GAN

    在 /home/your_name/TensorFlow/DCGAN/ 下新建文件 train.py,同时新建文件夹 logs 和文件夹 samples,前者用来保存训练过程中的日志和模型,后者用来保 ...

  6. 用GAN生成二维样本的小例子

    同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/27343585 本文完整代码地址:Generative Adversarial Networks (GANs) with ...

  7. 提高驾驶技术:用GAN去除(爱情)动作片中的马赛克和衣服

    同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/27199954 作为一名久经片场的老司机,早就想写一些探讨驾驶技术的文章.这篇就介绍利用生成式对抗网络(GAN)的两个基 ...

  8. 学习笔记GAN003:GAN、DCGAN、CGAN、InfoGAN

    ​GAN应用集中在图像生成,NLP.Robt Learning也有拓展.类似于NLP中的Actor-Critic. https://arxiv.org/pdf/1610.01945.pdf . Gen ...

  9. 用MXNet实现mnist的生成对抗网络(GAN)

    用MXNet实现mnist的生成对抗网络(GAN) 生成式对抗网络(Generative Adversarial Network,简称GAN)由一个生成网络与一个判别网络组成.生成网络从潜在空间(la ...

  10. 从一篇ICLR'2017被拒论文谈起:行走在GAN的Latent Space

    同步自我的知乎专栏文章:https://zhuanlan.zhihu.com/p/32135185 从Slerp说起 ICLR'2017的投稿里,有一篇很有意思但被拒掉的投稿<Sampling ...

随机推荐

  1. JQuery经典总结

    1.jQuery介绍 jQuery是一个js框架(其实就是一个.js文件),它的特点是使用选择器查找要操作的节点,并且将这些节点封装成一个jQuery对象.封装的目的是为了更好地兼容不同的浏览器之间的 ...

  2. 【ghost初级教程】 怎么搭建一个免费的ghost博客

    ghost博客系统无疑是这个月最火热的话题之一,这个号称”只为博客“的系统,早在项目开始之初就受到了众人的关注.它使用了当前最火热node.js技术,10月14日发布了V0.3.3版本.江湖传言它将是 ...

  3. 提起Ajax请求的方式(POST)

    前言 => 是ES6中的arrow function x=>x+6 就相当于 function(x){ return x+6; } 正文 XMLHttpRequest a=new XMLH ...

  4. Python并发编程-SocketServer多线程版

    #server.py import socket from threading import Thread def chat(conn): conn.send(b'hello') msg = conn ...

  5. JAVAEE学习——hibernate03:多表操作详解、级联、关系维护和练习:添加联系人

    一.一对多|多对一 1.关系表达 表中的表达 实体中的表达 orm元数据中表达 一对多 <!-- 集合,一对多关系,在配置文件中配置 --> <!-- name属性:集合属性名 co ...

  6. ajax个人总结

    ajax是什么? AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). AJAX 不是新的编程语言,而是一种使用现有标准的新方法. ...

  7. 【BZOJ 2671】 2671: Calc (数论,莫比乌斯反演)

    2671: Calc Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 303  Solved: 157 Description 给出N,统计满足下面条件 ...

  8. [NOI2014]购票 --- 斜率优化 + 树形DP + 数据结构

    [NOI2014]购票 题目描述 今年夏天,NOI在SZ市迎来了她30周岁的生日. 来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会. 全国的城市构成了一棵以SZ市为根的有根树,每 ...

  9. JZYZOJ1540 BZOJ4035 [ haoi2015 上午] T3 博弈论 sg函数 分块 haoi

    http://172.20.6.3/Problem_Show.asp?id=1540 之前莫比乌斯反演也写了一道这种找规律分块计算的题,没觉得这么恶心啊. 具体解释看代码. 翻硬币的具体方法就是分别算 ...

  10. 2017-2018-1 JAVA实验站 冲刺 day06

    2017-2018-1 JAVA实验站 冲刺 day06 各个成员今日完成的任务 小组成员 今日工作 完成进度 张韵琪 进行工作总结.博客.小组成员头像 100% 齐力锋 找背按钮声音 100% 张浩 ...