[物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科.
2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理量 (下一章讨论).
3. 弹性体: 在荷载作用下产生弹性形变, 而撤去荷载后变形立即消失, 无题恢复原来的状态.
4. 本构关系: 物体的变形与应力之间的某种关系.
5. 弹性理论 $$\beex \bea\mbox{弹性理论}\sedd{\ba{ll} \mbox{线性弹性理论}\\ \mbox{非线性弹性理论 (有限弹性理论)}\sedd{\ba{ll} \mbox{几何非线性}\\ \mbox{材料非线性} \ea} \ea} \eea \eeex$$ 其中
(1) 几何非线性: 大变形时变形表为位移偏导数的非线性函数.
(2) 材料非线性: 本构关系由非线性函数给出.
6. 本章着重讨论既包括几何非线性又包括材料非线性的一般非线性弹性力学的数学模型.
[物理学与PDEs]第5章第1节 引言的更多相关文章
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第1章第1节 引言
1. 电动力学研究的对象是电磁场, 研究电磁场的基本属性---运动规律及它和带电物质的相互作用. 2. 场, 物质的一种存在方式. 3. Maxwell 方程组是电动力学中的基本方程, 是一切有关电磁 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
随机推荐
- gitlab-server环境搭建
1.安装GitLab的需求 操作系统 受支持的Unix衍生版 Ubuntu Debian CentOS Red Hat Enterprise Linux (使用CentOS的包和命令) Scienti ...
- IDEWorkspaceChecks.plist文件是干什么用的?
在提交PR的时候,无意间发现了在xcworkspace/xcshareddata中多了一个名为IDEWorkspaceChecks.plist的文件.自己并没有手动创建此文件,在网上查了一下,最终对其 ...
- Docker的使用初探(一):常用指令说明
目录 Docker的使用初探(一):常用指令说明 为什么要用Docker Docker的安装与简单使用 国内镜像加速 常用指令 Docker的使用初探(一):常用指令说明 前几个星期实践的了,再不记录 ...
- How To Size Your Apache Flink® Cluster: A Back-of-the-Envelope Calculation
January 11, 2018- Apache Flink Robert Metzger and Chris Ward A favorite session from Flink Forward B ...
- org.apache.ibatis.builder.IncompleteElementException: Could not find result map com.hp.entity.Emp
错误提示代码: org.apache.ibatis.builder.IncompleteElementException: Could not find result map com.hp.entit ...
- threejs学习笔记(一)
得到webgl的渲染管线
- 【Consul】CONSUL调研
[Consul]CONSUL调研 2016年08月18日 18:31:53 YoungerChina 阅读数:1962更多 所属专栏: Consul修炼 版权声明:原创不易,转载请注明出处! ht ...
- 【原创】分布式事务之TCC事务模型
引言 在上篇文章<老生常谈--利用消息队列处理分布式事务>一文中留了一个坑,今天来填坑.如下图所示 如果服务A和服务B之间是同步调用,比如服务C需要按流程调服务A和服务B,服务A和服务B要 ...
- 基于 HTML5 的 WebGL 自定义 3D 摄像头监控模型
前言 随着视频监控联网系统的不断普及和发展, 网络摄像机更多的应用于监控系统中,尤其是高清时代的来临,更加快了网络摄像机的发展和应用. 在监控摄像机数量的不断庞大的同时,在监控系统中面临着严峻的现状问 ...
- Mac之brew使用
brew : 终端程序管理工具 能让你更快速的安装你想要的工具.而不用考虑大量的依赖. 安装命令 给官网的一样也可以自己去官网查看 它就类似于centos下的yum 和 Ubuntu下的apt-get ...