一。pipeline

  一个典型的机器学习过程从数据收集开始,要经历多个步骤,才能得到需要的输出。这非常类似于流水线式工作,即通常会包含源数据ETL(抽取、转化、加载),数据预处理,指标提取,模型训练与交叉验证,新数据预测等步骤。

  在介绍工作流之前,我们先来了解几个重要概念:

    • DataFrame:使用Spark SQL中的DataFrame作为数据集,它可以容纳各种数据类型。 较之 RDD,包含了 schema 信息,更类似传统数据库中的二维表格。它被 ML Pipeline 用来存储源数据。例如,DataFrame中的列可以是存储的文本,特征向量,真实标签和预测的标签等。
    • Transformer:翻译成转换器,是一种可以将一个DataFrame转换为另一个DataFrame的算法。比如一个模型就是一个 Transformer。它可以把 一个不包含预测标签的测试数据集 DataFrame 打上标签,转化成另一个包含预测标签的 DataFrame。技术上,Transformer实现了一个方法transform(),它通过附加一个或多个列将一个DataFrame转换为另一个DataFrame。
    • Estimator:翻译成估计器或评估器,它是学习算法或在训练数据上的训练方法的概念抽象。在 Pipeline 里通常是被用来操作 DataFrame 数据并生产一个 Transformer。从技术上讲,Estimator实现了一个方法fit(),它接受一个DataFrame并产生一个转换器。如一个随机森林算法就是一个 Estimator,它可以调用fit(),通过训练特征数据而得到一个随机森林模型。

    • Parameter:Parameter 被用来设置 Transformer 或者 Estimator 的参数。现在,所有转换器和估计器可共享用于指定参数的公共API。ParamMap是一组(参数,值)对。

    • PipeLine:翻译为工作流或者管道。工作流将多个工作流阶段(转换器和估计器)连接在一起,形成机器学习的工作流,并获得结果输出。
      工作流如何工作

二。构建 ml pipeline

  

Spark2.0起,SQLContext、HiveContext已经不再推荐使用,改以SparkSession代之,故本文中不再使用SQLContext来进行相关的操作,关于SparkSession的具体详情,这里不再赘述,可以参看Spark2.0的官方文档

Spark2.0以上版本的pyspark创建一个名为spark的SparkSession对象,当需要手工创建时,SparkSession可以由其伴生对象的builder()方法创建出来

from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import HashingTF, Tokenizer # Prepare training documents from a list of (id, text, label) tuples.
training = spark.createDataFrame([
(0, "a b c d e spark", 1.0),
(1, "b d", 0.0),
(2, "spark f g h", 1.0),
(3, "hadoop mapreduce", 0.0)
], ["id", "text", "label"]) tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")
lr = LogisticRegression(maxIter=10, regParam=0.001) pipeline = Pipeline(stages=[tokenizer, hashingTF, lr]) model = pipeline.fit(training) test = spark.createDataFrame([
(4, "spark i j k"),
(5, "l m n"),
(6, "spark hadoop spark"),
(7, "apache hadoop")
], ["id", "text"]) prediction = model.transform(test)
selected = prediction.select("id", "text", "probability", "prediction")
for row in selected.collect():
rid, text, prob, prediction = row
print("(%d, %s) --> prob=%s, prediction=%f" % (rid, text, str(prob), prediction)) //输出
(4, spark i j k) --> prob=[0.155543713844,0.844456286156], prediction=1.000000
(5, l m n) --> prob=[0.830707735211,0.169292264789], prediction=0.000000
(6, spark hadoop spark) --> prob=[0.0696218406195,0.93037815938], prediction=1.000000
(7, apache hadoop) --> prob=[0.981518350351,0.018481649649], prediction=0.000000

通过上述结果,我们可以看到,第4句和第6句中都包含”spark”,其中第六句的预测是1,与我们希望的相符;而第4句虽然预测的依然是0,但是通过概率我们可以看到,第4句有46%的概率预测是1,而第5句、第7句分别只有7%和2%的概率预测为1,这是由于训练数据集较少,如果有更多的测试数据进行学习,预测的准确率将会有显著提升。

spark ML pipeline 学习的更多相关文章

  1. 使用spark ml pipeline进行机器学习

    一.关于spark ml pipeline与机器学习 一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的 ...

  2. Spark ML Pipeline简介

    Spark ML Pipeline基于DataFrame构建了一套High-level API,我们可以使用MLPipeline构建机器学习应用,它能够将一个机器学习应用的多个处理过程组织起来,通过在 ...

  3. spark ml pipeline构建机器学习任务

    一.关于spark ml pipeline与机器学习一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的流 ...

  4. spark ml 的例子

    一.关于spark ml pipeline与机器学习 一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的 ...

  5. 基于Spark ML的Titanic Challenge (Top 6%)

    下面代码按照之前参加Kaggle的python代码改写,只完成了模型的训练过程,还需要对test集的数据进行转换和对test集进行预测. scala 2.11.12 spark 2.2.2 packa ...

  6. Spark ML机器学习库评估指标示例

    本文主要对 Spark ML库下模型评估指标的讲解,以下代码均以Jupyter Notebook进行讲解,Spark版本为2.4.5.模型评估指标位于包org.apache.spark.ml.eval ...

  7. Spark.ML之PipeLine学习笔记

    地址: http://spark.apache.org/docs/2.0.0/ml-pipeline.html   Spark PipeLine 是基于DataFrames的高层的API,可以方便用户 ...

  8. Spark ML下实现的多分类adaboost+naivebayes算法在文本分类上的应用

    1. Naive Bayes算法 朴素贝叶斯算法算是生成模型中一个最经典的分类算法之一了,常用的有Bernoulli和Multinomial两种.在文本分类上经常会用到这两种方法.在词袋模型中,对于一 ...

  9. Spark ML源码分析之一 设计框架解读

    本博客为作者原创,如需转载请注明参考           在深入理解Spark ML中的各类算法之前,先理一下整个库的设计框架,是非常有必要的,优秀的框架是对复杂问题的抽象和解剖,对这种抽象的学习本身 ...

随机推荐

  1. C++ STL的一些操作

    priority_queue 最常用的当然是在dij的时候. #include <queue> struct node { int x, dis; bool operator < ( ...

  2. Java面试题[转载]

    目录 转载 简历篇 请自我介绍 请介绍项目 基础篇 基本功 面向对象的特征 final, finally, finalize 的区别 int 和 Integer 有什么区别 重载和重写的区别 抽象类和 ...

  3. JMeter二次开发环境配置

    本文主要介绍如何在Eclipse中配置JMeter开发环境. 一.下载JMeter源码 1.在JMeter官网下载二进制包和源码包: 解压备用: 二进制解压后文件夹名称为“jmeter_release ...

  4. [JDK8] Stream

    1 collect(toList()) collect(toList()) 方法由Stream 里的值生成一个列表,是一个及早求值操作. 2 map 如果有一个函数可以将一种类型的值转换成另外一种类型 ...

  5. DirectX11--实现一个3D魔方(3)

    前言 (2019/1/9 09:23)上一章我们主要讲述了魔方的旋转,这个旋转真是有毒啊,搞完这个部分搭键鼠操作不到半天应该就可以搭完了吧... (2019/1/9 21:25)啊,真香 有人发这张图 ...

  6. .NET尝试访问某方法失败

    今天发现了一个错误: xxxx.xxxx尝试访问xxxx.xxxx方法失败. 调试无果,经过分析后得到这是.NET引用的问题.果然有了这个方向后,发现了引用不匹配的问题,问题随之解决. 记录一下.

  7. DB2读取CLOB字段-was报错:操作无效:已关闭 Lob。 ERRORCODE=-4470, SQLSTATE=null

    DB2读取CLOB字段-was报错:操作无效:已关闭 Lob. ERRORCODE=-4470, SQLSTATE=null 解决方法,在WAS中要用的数据源里面配置连个定制属性: progressi ...

  8. P3396 哈希冲突

    很好的根号算法(这种思想好像叫根号分治?) 首先,暴力是Ο(n2)的 考虑预处理: for(p=1;p<=n;p++) //枚举模数 ans[p][i%p]+=value[i]; 看似很好但还是 ...

  9. ES7的async/await

    async 表示这是一个async函数,await只能用在这个函数里面. await 表示在这里等待promise返回结果了,再继续执行. await 后面跟着的应该是一个promise对象 awai ...

  10. PostgreSQL中JSON、JSONB基本操作符

    PostgreSQL 9.5以上的版本中有了很多方便的操作符,使得操作 JSON 变得非常方便了. 一. -> 和 ->> : -> 表示获取一个JSON数组元素,支持下标值( ...