系列(Series)是能够保存任何类型的数据(整数,字符串,浮点数,Python对象等)的一维标记数组。轴标签统称为索引。

pandas.Series

Pandas系列可以使用以下构造函数创建 -


pandas.Series( data, index, dtype, copy)
 
参数 描述
data 数据采取各种形式,如:ndarraylistconstants
index 索引值必须是唯一的和散列的,与数据的长度相同。 默认np.arange(n)如果没有索引被传递。
dtype dtype用于数据类型。如果没有,将推断数据类型
copy 复制数据,默认为false

可以使用各种输入创建一个系列,如:

  • 数组
  • 字典
  • 标量值或常数

创建一个空的系列

创建一个基本系列,是一个空系列。

import pandas as pd

s = pd.Series()
print(s)

输出结果:

Series([], dtype: float64)
 

从ndarray创建一个系列

如果数据是ndarray,则传递的索引必须具有相同的长度。 如果没有传递索引值,那么默认的索引将是范围(n),其中n是数组长度,即[0,1,2,3…. range(len(array))-1] - 1]

示例1:没有传递任何索引,因此默认情况下,它分配了从0len(data)-1的索引,即:03

import pandas as pd
import numpy as np data = np.array(['a','b','c','d'])
s = pd.Series(data)
print(s)

输出结果:

0   a
1 b
2 c
3 d
dtype: object

示例2:传递了索引值。现在可以在输出中看到自定义的索引值

import pandas as pd
import numpy as np data = np.array(['a','b','c','d'])
s = pd.Series(data,index=[100,101,102,103])
print(s)

输出结果:

100  a
101 b
102 c
103 d
dtype: object

从字典创建一个系列

  字典(dict)可以作为输入传递,如果没有指定索引,则按排序顺序取得字典键以构造索引。 如果传递了索引,索引中与标签对应的数据中的值将被拉出。

示例1

import pandas as pd

data = {'a' : 0., 'b' : 1., 'c' : 2.}
s = pd.Series(data)
print(s)

输出结果:

a 0.0
b 1.0
c 2.0
dtype: float64

注意 - 字典键用于构建索引。

示例2

import pandas as pd

data = {'a' : 0., 'b' : 1., 'c' : 2.}
s = pd.Series(data,index=['b','c','d','a'])
print(s)

输出结果:

b 1.0
c 2.0
d NaN
a 0.0
dtype: float64
 

注意观察 - 索引顺序保持不变,缺少的元素使用NaN(不是数字)填充。

从标量创建一个系列

如果数据是标量值,则必须提供索引。将重复该值以匹配索引的长度。

import pandas as pd

s = pd.Series(5, index=[0, 1, 2, 3])
print(s)

输出结果:

0  5
1 5
2 5
3 5
dtype: int64

从具有位置的系列中访问数据

  系列中的数据可以使用类似于访问ndarray中的数据来访问。

示例-1:检索第一个元素。比如已经知道数组从零开始计数,第一个元素存储在零位置等等。

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])
print(s[0])

输出结果:

1
 

示例-2

检索系列中的前三个元素。 如果a:被插入到其前面,则将从该索引向前的所有项目被提取。 如果使用两个参数(使用它们之间),两个索引之间的项目(不包括停止索引)。

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])

#retrieve the first three element
print s[:3]

输出结果:

a  1
b 2
c 3
dtype: int64

示例-3:检索最后三个元素

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])

#retrieve the last three element
print s[-3:]

输出结果:

c  3
d 4
e 5
dtype: int64

使用标签检索数据(索引)

  一个系列就像一个固定大小的字典,可以通过索引标签获取和设置值。

示例1:使用索引标签值检索单个元素。

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])

#retrieve a single element
print s['a']

输出结果:

1
 

示例2:使用索引标签值列表检索多个元素。

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])

#retrieve multiple elements
print s[['a','c','d']]

输出结果:

a  1
c 3
d 4
dtype: int64
 

示例3:如果不包含标签,则会出现异常。

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])

#retrieve multiple elements
print s['f']

输出结果 :


KeyError: 'f'

Pandas | 02 Series 系列的更多相关文章

  1. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

  2. 金融量化分析【day110】:Pandas的Series对象

    一.pandas简介安装 pandas是一个强大的python数据分析的工具包 pandsa是基于NumPy构建的 1.pandas的主要功能 1.具备对其功能的数据结构DataFrame.Serie ...

  3. Pandas之Series+DataFrame

    Series是带有标签的一维数组,可以保存任何数据类型(整数,字符串,浮点数,python对象) index查看series索引,values查看series值 series相比于ndarray,是一 ...

  4. Python之Pandas中Series、DataFrame

    Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...

  5. 数据科学:Pandas 和 Series 的 describe() 方法

    一.Pandas 和 Series 的 describe() 方法 1)功能 功能:对数据中每一列数进行统计分析:(以“列”为单位进行统计分析) 默认只先对“number”的列进行统计分析: 一列数据 ...

  6. pandas的Series

    pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False) 首先介绍一下基本的: d ...

  7. Pandas 数据结构Series:基本概念及创建

    Series:"一维数组" 1. 和一维数组的区别 # Series 数据结构 # Series 是带有标签的一维数组,可以保存任何数据类型(整数,字符串,浮点数,Python对象 ...

  8. Pandas之Series

    # Series 数据结构 # Series 是带有标签的一维数组,可以保存任何数据类型(整数,字符串,浮点数,Python对象等),轴标签统称为索引 import numpy as np impor ...

  9. pandas学习series和dataframe基础

    PANDAS 的使用 一.什么是pandas? 1.python Data Analysis Library 或pandas 是基于numpy的一种工具,该工具是为了解决数据分析人物而创建的. 2.p ...

随机推荐

  1. Qt Quick 事件处理之鼠标、键盘、定时

    一.鼠标事件 MouseArea 对象可以附加到一个 item 上供 item 处理鼠标事件,它本身是一个不可见的 item .在其内部,可以直接引用它所附着的对象的属性和方法.你可以将 MouseA ...

  2. SpringBoot第七篇:整合Mybatis-Plus

    作者:追梦1819 原文:https://www.cnblogs.com/yanfei1819/p/10881666.html 版权声明:本文为博主原创文章,转载请附上博文链接! 引言   一看这个名 ...

  3. vulnhub之SP:Harrison靶机

    下载地址:‘https://www.vulnhub.com/entry/sp-harrison,302/’ 环境:靶机放在virtualbox上运行,网卡模式 攻击机:kali Linux运行在VMw ...

  4. linux 三剑客(awk,sed,grep)

    1.awk 在某些场景下,我们需要过滤方式希望是列来匹配,而不是sed的行来匹配,而且awk还可以嵌套for等循环去使用,拓展性强,当然awk也是最难的. awk的常用命令选项: -F fs   fs ...

  5. NPOI中的PhysicalNumberOfCells 与 LastCellNum

    这两个理论上一个是算空列,一个不算空列,但是实际上有时候相同数据的excel,不同的excel编辑工具保存后的,PhysicalNumberOfCells可能不一样,会导致莫名其妙错误,最好使用Las ...

  6. Python基础10

    字符串大小写转换,除了upper,lower,还有一种方法,casefold( ) 方法 比较这两种方法的适用范围

  7. nginx配置多个TLS证书,以及TLS SNI简介

    背景 原来申请的正式域名备案通过,TLS证书也申请了.之前使用的临时域名和证书作为测试环境使用.于是要在单个ECS主机上配置nginx多个证书和多个域名. 实践 nginx部署多个TLS证书很简单,在 ...

  8. Django的视图系统:View

    一.CBV和FBV FBV:functoin based view,基于函数的view 我们之前写过的都是基于函数的view CBV:class based view,基于类的view 定义CBV: ...

  9. 轻量级.Net ORM SqlSuger项目实战

    SqlSuger,清垃圾ORM实战例子. //添加引用 using SqlSugar; //在构造函数中实例化SqlSuger clinet = new SqlSugarClient(new Conn ...

  10. InvalidOperationException: Operations that change non-concurrent collections must have exclusive access. A concurrent update was performed on this collection and corrupted its state. The collection's

    InvalidOperationException: Operations that change non-concurrent collections must have exclusive acc ...