浅析容斥和DP综合运用
浅析容斥和DP综合运用
前言
众所周知在数数题中有一种很重要的计数方法——容斥。但是容斥有一个很大的缺陷:枚举子集的复杂度过高。所以对于数据规模较大的情况会很乏力,那么我们就只能引入容斥DP。
复习一下容斥
什么情况下用容斥?容斥能干什么?
容斥的基本功能就是当你知道任意个指定集合的交集,你就能推出这些集合的并集。
形式化的来说,就是:
\[
\left|\bigcup_{i=1}^{n} A_{i}\right|=\sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right|+\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\cdots+(-1)^{n-1}\left|A_{1} \cap \cdots \cap A_{n}\right|
\]
只使用容斥朴素算法
如果我们只会容斥,我们该怎么做?很显然根据上面的公式,我们需要枚举任意集合的组合方式,然后统计他们的答案,将他们加入答案。
比如说在【线上训练 5】乘方中,当我们枚举出子集,我们就很容易求出子集的大小。
而【线上训练3】数个数,当我们枚举出了子集,我们也能统计出子集的大小
我们通过以上两道题,总结出了这种容斥题的一个特点:都是求集合的并集,同时你可以通过一些方式求得集合的交集。
使用DP进行优化
我们思考一下就会发现,上面两道题的复杂度瓶颈都在于需要\(2^k\)的枚举出所有的子集再进行DP。那我们就可以考虑进行DP。因为对于一个子集,添加一个元素,就会导致他贡献的符号取反。
一般DP状态都是\(dp[i][j]\),其中\(i\)代表前\(i\)个集合中的元素。而\(j\)一般代表一个决定交集大小的值。而对于\(j\)值相同的所有状态(子集),在它们之后再添加一个元素,对答案增加的贡献都一样。
举个例子:
在【线上训练3】数个数中,如果往一个子集内加入新的元素,子集的大小就会增加\((字符集)^{(加入的区间位置-上一个区间位置)}\)。所以我们记录的\(j\)就是上一个区间的位置。
而在【线上训练 5】乘方中,如果往一个子集内加入新的元素,子集的大小就会变成\(lcm(j,N_i)\)。所以\(j\)记录的就是选择的子集的\(lcm\)。
对于前一道题而言,因为决定所选子集的大小是子集中元素的间隔距离。所以我们需要一边\(dp\)选择元素,一边把每一次往子集里添加元素增加的贡献累加进入最终答案。
而对于后一道题而言,因为决定所选子集的大小是子集中元素的\(lcm\),因为这是一个数,而且这个数和前面说的转移答案所需要的\(j\)是同一个数,所以我们可以只在\(dp\)数组里记录容斥系数的和,等到最后再来统计答案。
浅析容斥和DP综合运用的更多相关文章
- hdu-5794 A Simple Chess(容斥+lucas+dp)
题目链接: A Simple Chess Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Ot ...
- HUST 1569(Burnside定理+容斥+数位dp+矩阵快速幂)
传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少 ...
- 【BZOJ-4455】小星星 容斥 + 树形DP
4455: [Zjoi2016]小星星 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 204 Solved: 137[Submit][Status] ...
- bzoj 3622 已经没有什么好害怕的了 类似容斥,dp
3622: 已经没有什么好害怕的了 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1213 Solved: 576[Submit][Status][ ...
- 洛谷P5206 [WC2019]数树 [容斥,DP,生成函数,NTT]
传送门 Orz神仙题,让我长了许多见识. 长式子警告 思路 y=1 由于y=1时会导致后面一些式子未定义,先抓出来. printf("%lld",opt==0?1:(opt==1? ...
- LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...
- HDU 4632 Palindrome subsequence & FJUT3681 回文子序列种类数(回文子序列个数/回文子序列种数 容斥 + 区间DP)题解
题意1:问你一个串有几个不连续子序列(相同字母不同位置视为两个) 题意2:问你一个串有几种不连续子序列(相同字母不同位置视为一个,空串视为一个子序列) 思路1:由容斥可知当两个边界字母相同时 dp[i ...
- [LOJ2542][PKUWC2018]随机游走(MinMax容斥+树形DP)
MinMax容斥将问题转化为求x到S中任意点的最小时间. 树形DP,直接求概率比较困难,考虑只求系数.最后由于x节点作为树根无父亲,所以求出的第二个系数就是答案. https://blog.csdn. ...
- uoj#422. 【集训队作业2018】小Z的礼物(MIn-Max容斥+插头dp)
题面 传送门 题解 好迷-- 很明显它让我们求的是\(Max(S)\),我们用\(Min-Max\)容斥,因为\(Min(S)\)是很好求的,只要用方案数除以总方案数算出概率,再求出倒数就是期望了 然 ...
随机推荐
- 【杂文】CSP2019蒟蒻AFO(假)记
[杂文]CSP2019蒟蒻AFO(假)记 [初赛前 N 天] 时间:2019-10-15 今晚 \(2012\) 的初赛题做到心态爆炸,选择考计算机基础知识一脸懵逼,填空和后面一道大模拟直接跳过,最后 ...
- VM1059 bootstrap-table.min.js:7 Uncaught TypeError: Cannot read property 'classes' of undefined
参考链接:https://blog.csdn.net/liuqianspq/article/details/81868283 1.阳光明媚的下午,我在写CRUD,让数据传到前端的时候,解析的时候报错了 ...
- HTML input属性详谈
value属性 value属性指定输入字段的初始值: <form> 名字:<br> <input type="text" name="you ...
- golang多个项目时如何配置GOPATH,使用gb包依赖管理工具,不同项目配置不同的GOPATH的
golang多个项目时如何配置GOPATH,使用gb包依赖管理工具,不同项目配置不同的GOPATH的 1:执行脚本setGoPath.sh#!/bin/bashif [[ $GOPATH =~ .*$ ...
- Scrum 冲刺第五篇
我们是这次稳了队,队员分别是温治乾.莫少政.黄思扬.余泽端.江海灵 一.会议 1.1 29号站立式会议照片: 1.2 昨天已完成的事情 团队成员 昨日计划完成的工作: 黄思扬 活动管理模块(前端) ...
- windows 如何cmd启动redis
运行cmd 然后到redis路径 运行命令: redis-server redis.windows.conf
- liteos软件定时器(十)
1 概述 1.1 基本概念 软件定时器,是基于系统Tick时钟中断且由软件来模拟的定时器,当经过设定的Tick时钟计数值后会触发用户定义的回调函数.定时精度与系统Tick时钟的周期有关. 硬件定时器受 ...
- springcloud学习之路: (一) 最简单的搭建springcloud的方法
参考资料: [JavaEE] 五分钟搭建SpringCloud环境, 进入微服务时代 感谢上篇博文大佬带领走进springcloud世界, 本博文主要目的为记录自己学习springcloud的点点滴滴 ...
- Ubuntu 18.04通过命令禁用/开启触控板
Ubuntu下经常遇到无法用快捷键关闭触控板的情况,博主的电脑安装Ubuntu18.04后便出现了该问题. 解决办法: 首先查看输入设备的id,命令行输入: xinput ,插鼠标与不插鼠标时,Tou ...
- TensorFlow GPU版本的安装与调试
笔者采用python3.6.7+TensorFlow1.12.0+CUDA10.0+CUDNN7.3.1构建环境 PC端配置为GTX 1050+Intel i7 7700HQ 4核心8线程@2.8GH ...