点此看题面

大致题意: 给你一个序列,让你支持区间求和、区间取模、单点修改操作。

区间取模

区间求和和单点修改显然都很好维护吧,难的主要是区间取模。

取模标记无法叠加,因此似乎只能暴力搞?

实际上,我么先考虑一个结论:

一个数\(x\)向一个不大于它的数\(p\)取模,所得结果必然小于\(\frac x2\)。

证明:

当\(p\le\frac x2\)时,由于\(x\%p<p\),所以\(x\%p<\frac x2\)。

当\(p>\frac x2\)时,由于\(p\le x\),所以\(x\%p=x-p<x-\frac x2<\frac x2\)。

所以,这个数减小的速度是非常快的。

同时我们又有一个显然的性质:

一个数\(x\)向一个大于它的数\(p\)取模,所得结果必然为\(x\)本身。

因此,我们可以考虑在原本暴力基础上加一个剪枝:

若取模区间内最大值小于当前模数,就可以直接\(return\)掉。

这样一来,就做完了?

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 100000
#define LL long long
using namespace std;
int n,a[N+5];
class FastIO
{
private:
#define FS 100000
#define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
#define pc(c) (C==E&&(clear(),0),*C++=c)
#define tn (x<<3)+(x<<1)
#define D isdigit(c=tc())
int T;char c,*A,*B,*C,*E,FI[FS],FO[FS],S[FS];
public:
I FastIO() {A=B=FI,C=FO,E=FO+FS;}
Tp I void read(Ty& x) {x=0;W(!D);W(x=tn+(c&15),D);}
Ts I void read(Ty& x,Ar&... y) {read(x),read(y...);}
Tp I void write(Ty x) {W(S[++T]=x%10+48,x/=10);W(T) pc(S[T--]);}
Tp I void writeln(Con Ty& x) {write(x),pc('\n');}
I void clear() {fwrite(FO,1,C-FO,stdout),C=FO;}
}F;
class SegmentTree//线段树
{
private:
#define P CI l=1,CI r=n,CI rt=1
#define L l,mid,rt<<1
#define R mid+1,r,rt<<1|1
#define PU(x) (Mx[x]=max(Mx[x<<1],Mx[x<<1|1]),S[x]=S[x<<1]+S[x<<1|1])
LL Mx[N<<2],S[N<<2];
public:
I void Build(P)//建树
{
if(l==r) return (void)(Mx[rt]=S[rt]=a[l]);RI mid=l+r>>1;
Build(L),Build(R),PU(rt);
}
I void Mod(CI tl,CI tr,CI X,P)//区间取模
{
if(Mx[rt]<X) return;if(l==r) return (void)(Mx[rt]%=X,S[rt]%=X);RI mid=l+r>>1;
tl<=mid&&(Mod(tl,tr,X,L),0),tr>mid&&(Mod(tl,tr,X,R),0),PU(rt);
}
I void Upt(CI x,CI y,P)//单点修改
{
if(l==r) return (void)(Mx[rt]=S[rt]=y);RI mid=l+r>>1;
x<=mid?Upt(x,y,L):Upt(x,y,R),PU(rt);
}
I LL Query(CI tl,CI tr,P)//区间求和
{
if(tl<=l&&r<=tr) return S[rt];RI mid=l+r>>1;
return (tl<=mid?Query(tl,tr,L):0)+(tr>mid?Query(tl,tr,R):0);
}
}S;
int main()
{
RI Qt,i,op,x,y,z;for(F.read(n,Qt),i=1;i<=n;++i) F.read(a[i]);
S.Build();W(Qt--) switch(F.read(op,x,y),op)
{
case 1:F.writeln(S.Query(x,y));break;
case 2:F.read(z),S.Mod(x,y,z);break;
case 3:S.Upt(x,y);break;
}return F.clear(),0;
}

【CF438D】The Child and Sequence(线段树)的更多相关文章

  1. CF438D The Child and Sequence 线段树

    给定数列,区间查询和,区间取模,单点修改. n,m小于10^5 ...当区间最值小于模数时,就直接返回就好啦~ #include<cstdio> #include<iostream& ...

  2. Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间取摸

    D. The Child and Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...

  3. Codeforces 438D The Child and Sequence - 线段树

    At the children's day, the child came to Picks's house, and messed his house up. Picks was angry at ...

  4. Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间求和+点修改+区间取模

    D. The Child and Sequence   At the children's day, the child came to Picks's house, and messed his h ...

  5. cf250D. The Child and Sequence(线段树 均摊复杂度)

    题意 题目链接 单点修改,区间mod,区间和 Sol 如果x > mod ,那么 x % mod < x / 2 证明: 即得易见平凡, 仿照上例显然, 留作习题答案略, 读者自证不难. ...

  6. CF(438D) The Child and Sequence(线段树)

    题意:对数列有三种操作: Print operation l, r. Picks should write down the value of . Modulo operation l, r, x. ...

  7. CodeForces 438D The Child and Sequence (线段树 暴力)

    传送门 题目大意: 给你一个序列,要求在序列上维护三个操作: 1)区间求和 2)区间取模 3)单点修改 这里的操作二很讨厌,取模必须模到叶子节点上,否则跑出来肯定是错的.没有操作二就是线段树水题了. ...

  8. Codeforces Round #250 (Div. 1) D. The Child and Sequence (线段树)

    题目链接:http://codeforces.com/problemset/problem/438/D 给你n个数,m个操作,1操作是查询l到r之间的和,2操作是将l到r之间大于等于x的数xor于x, ...

  9. 2016暑假多校联合---Rikka with Sequence (线段树)

    2016暑假多校联合---Rikka with Sequence (线段树) Problem Description As we know, Rikka is poor at math. Yuta i ...

  10. [CF438D]The Child and Sequence【线段树】

    题目大意 区间取模,区间求和,单点修改. 分析 其实算是一道蛮简单的水题. 首先线段树非常好解决后两个操作,重点在于如何解决区间取模的操作. 一开始想到的是暴力单点修改,但是复杂度就飙到了\(mnlo ...

随机推荐

  1. 网Js RSA加密,后端(Asp.Net)解码(非对称加解密)

    前言 RSA加解密知识自行百度了解决一下 1.取得公钥与私钥方法 JSEncrypt Download 下载后将其发布成网站进入:http://127.0.0.1:3000/demo/index.ht ...

  2. 【模板】gcd和exgcd

    1. gcd: int gcd(int a,int b) { return !b?a:gcd(b,a%b); } exgcd: int exgcd(int a,int b,int& x,int ...

  3. C#使用splitContainer控件制作收缩展开面板

    C#使用splitContainer控件制作收缩展开面板 原创 2011年07月19日 17:18:02 标签: c# / object / 扩展 / 测试 15690         最近对Squi ...

  4. RookeyFrame模块初始化

    上一篇讲了下线上创建模块,这一次讲下线下创建的模块如何初始化,实体类的创建可参考Demo中的客户主数据模块 首先讲下model类创建中的约定: 1.所有数据模型继承BaseEntity 2.需要绑定枚 ...

  5. excel转pdf,itextpdf转换excel

    最近项目有需求,需要把excel转pdf.由于时间比较急,所以在github上找了一个转换的.最终没用上,但还是踩坑了一波. 踩坑一: 首先,这个是导出的流之间会互相影响,因为流读取过,导致导出的ex ...

  6. 将多个sass文件合并到一个文件中

    将多个sass文件合并到一个文件中 应用场景:制作angular npm包的时候,定义的一些全局样式,自定义主题色这类的情况下,多个scss文件会要合并成一个文件并写到dist文件里,发布到仓库中. ...

  7. 【转载】Visual Studio中WinForm窗体程序如何切换.NET Framework版本

    在C#语言的WinForm窗体程序中,有时候我们需要切换WinForm窗体程序项目的.NET Framework版本号,例如从.NET Framework 4.5版本切换到.NET Framework ...

  8. ssh关闭服务关闭 nohup

    默认输出 # nohup cmd & 指定输出路径 # nohup cmd > mylog.out 2>&1 &

  9. git使用读书笔记

    Normal 0 7.8 磅 0 2 false false false EN-US ZH-CN X-NONE /* Style Definitions */ table.MsoNormalTable ...

  10. 2.监控软件zabbix-服务端安装

    环境准备 Zabbix服务端环境要求: Red Hat Enterprise Linux CentOS Oracle Linux Debian Ubuntu 注意,要安装的Zabbix服务器需要联网, ...