【Codevs1227】方格取数2(费用流)
题意:给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)
现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来,该格子的数就变成0,
这样一共走K次,现在要求K次所达到的方格的数的和最大。
n<=50,k<=10
思路:费用流
将每个点裂成一个出点和一个入点(i,j,1..2),这个思路与最大流类似
(i,j,1)->(i,j,2) 连两条边:
容量为1,费用为a[i,j]
容量为K,费用为0
(i,j,2)->(i+1,j,1)连容量为K,费用为0的边 (i,j+1)类似
(n,n,2)->T 连流量为K,费用为0的边限制流量
跑最大费用最大流就行了,其实就是SPFA的三角不等式改个方向
var fan:array[..]of longint;
q:array[..]of longint;
head,vet,next,len1,len2:array[..]of longint;
pre:array[..,..]of longint;
inq:array[..]of boolean;
dis:array[..]of longint;
a:array[..,..]of longint;
num:array[..,..,..]of longint;
n,m,k1,i,j,k,tot,s,source,src:longint;
ans:int64; function min(x,y:longint):longint;
begin
if x<y then exit(x);
exit(y);
end; procedure add(a,b,c,d:longint);
begin
inc(tot);
next[tot]:=head[a];
vet[tot]:=b;
len1[tot]:=c;
len2[tot]:=d;
head[a]:=tot; inc(tot);
next[tot]:=head[b];
vet[tot]:=a;
len1[tot]:=;
len2[tot]:=-d;
head[b]:=tot;
end; function spfa:boolean;
var u,t,w,i,e,v:longint;
begin
for i:= to s do
begin
dis[i]:=-maxlongint;
inq[i]:=false;
end;
t:=; w:=; q[]:=source; inq[source]:=true; dis[source]:=;
while t<w do
begin
inc(t); u:=q[t mod (s+)];
inq[u]:=false;
e:=head[u];
while e<> do
begin
v:=vet[e];
if (len1[e]>)and(dis[u]+len2[e]>dis[v]) then
begin
pre[v,]:=u; pre[v,]:=e;
dis[v]:=dis[u]+len2[e];
if not inq[v] then
begin
inc(w); q[w mod (s+)]:=v;
inq[v]:=true;
end;
end;
e:=next[e];
end;
end;
if dis[src]=-maxlongint then exit(false)
else exit(true);
end; procedure mcf;
var k,e:longint;
t:int64;
begin
k:=src; t:=maxlongint;
while k<>source do
begin
e:=pre[k,]; k:=pre[k,];
t:=min(t,len1[e]);
end;
k:=src;
while k<>source do
begin
e:=pre[k,];
len1[e]:=len1[e]-t;
len1[fan[e]]:=len1[fan[e]]+t;
ans:=ans+t*len2[e];
k:=pre[k,];
end;
end; begin
assign(input,'codevs1227.in'); reset(input);
assign(output,'codevs1227.out'); rewrite(output);
readln(n,k1);
for i:= to do
if i mod = then fan[i]:=i+
else fan[i]:=i-;
for i:= to n do
for j:= to n do read(a[i,j]);
for i:= to n do
for j:= to n do
for k:= to do
begin
inc(s); num[i,j,k]:=s;
end;
for i:= to n do
for j:= to n do
begin
add(num[i,j,],num[i,j,],,a[i,j]);
add(num[i,j,],num[i,j,],k1,);
if j+<=n then add(num[i,j,],num[i,j+,],k1,);
if i+<=n then add(num[i,j,],num[i+,j,],k1,);
end;
source:=; src:=s+; inc(s);
add(num[n,n,],src,k1,);
while spfa do mcf;
writeln(ans);
close(input);
close(output);
end.
【Codevs1227】方格取数2(费用流)的更多相关文章
- Codevs 1227 方格取数 2(费用流)
1227 方格取数 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 查看运行结果 题目描述 Description 给出一个n*n的矩阵,每一格有一个非负整数 ...
- 洛谷 - P2045 - 方格取数加强版 - 费用流
原来这种题的解法是费用流. 从一个方格的左上走到右下,最多走k次,每个数最多拿走一次. 每次走动的流量设为1,起始点拆点成限制流量k. 每个点拆成两条路,一条路限制流量1,费用为价值相反数.另一条路无 ...
- 洛谷P2045 方格取数加强版(费用流)
题意 题目链接 Sol 这题能想到费用流就不难做了 从S向(1, 1)连费用为0,流量为K的边 从(n, n)向T连费用为0,流量为K的边 对于每个点我们可以拆点限流,同时为了保证每个点只被经过一次, ...
- LG2045 方格取数加强版 费用流
问题描述 LG2045 题解 费用流. 套路拆点,把\((i,j)\)拆为两个点,在这两个点之间连边:一条边流量为\(1\),费用为\(a_{i,j}\),另一条边为流量为\(INF\),费用为\(0 ...
- [CodeVs1227]方格取数2(最大费用最大流)
网络流24题的坑还没填完,真的要TJ? 题目大意:一个n*n的矩阵,每格有点权,从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来,该格子的数就变成0,这样一共走 ...
- codevs1227:方格取数2
题目描述 Description 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= )现在从(,)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来,该 ...
- poj3422K方格取数——最大费用最大流
题目:http://poj.org/problem?id=3422 最大费用最大流: 拆点,在自点之间连两条边,一条容量为1,边权为数字:一条容量为k-1,边权为0:表示可以走k次,只有一次能取到数字 ...
- codevs1227 方格取数2 注意数组啊啊啊啊啊啊啊啊啊啊
一开始T了一组RE了一组,实在找不出错来,就把数组加了一个0竟然就多A了一组.很惊讶的又加了几个0最后竟然全A了!!! 懒得做了,改的是之前的那个蚯蚓的游戏问题.还是需要拆点,至于为什么不能重复走结点 ...
- HDU 1565&1569 方格取数系列(状压DP或者最大流)
方格取数(2) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- LibreOJ #6007. 「网络流 24 题」方格取数 最小割 最大点权独立集 最大流
#6007. 「网络流 24 题」方格取数 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
随机推荐
- Python学习日志9月17日 一周总结
周一,9月11日 这天写的是过去一周的周总结,我从中找出当天的内容. 这天早晨给电脑折腾装机,早晨基本上没有学习,休息了一个早晨. 下午写的上周总结,完事做mooc爬虫课的作业,<Think P ...
- Ckeditor for Drupal
Ckeditor for Drupal 关于Drupal的所见即所得编辑器,Ckeditor是一个不错的选择,而且可以在Ckeditor官网直接下载到专为Drupal制作的版本: http:/ ...
- oracle count 百万级 分页查询记要总数、总条数优化
oracle count 百万级 分页查询记录总数.总条数优化 oracle count 百万级 查询记录总数.总条数优化 最近做一个项目时,做分页时,发现分页查询速度很慢,分页我做的是两次查询,一次 ...
- ratio_to_report分析函数求占比
drop table test; create table test ( name varchar(20), kemu varchar(20), score number ); insert int ...
- ios 点餐系统
这个程序的主要界面就是一个TabBarController.总共三个标签,第一个是所有的可点的菜,第二个是已点的菜,第三个是可以留言或者查看所有留言. 下面是第一个页面: 右上角的i按钮是添加新菜,每 ...
- hihoCoder-1097-Prim
这题就是prim的板子题,不过如果用end每次初始化为-1的话,我们就不需要对于每次选中的下一个点进行判断是否选中了,因为每次外层循环第一次进入都是可以的. 然后还很 (i=1:i<=n;i++ ...
- python多进程与多线程编程
进程(process)和线程(thread)是非常抽象的概念.多线程与多进程编程对于代码的并发执行,提升代码运行效率和缩短运行时间至关重要.下面介绍一下python的multiprocess和thre ...
- 《嵌入式linux应用程序开发标准教程》笔记——9.多线程编程
线程是轻量级进程,创建线程的开销要比进程小得多,在大型程序中应用广泛. 9.1 线程概述 进程包含自己的代码.数据.堆栈.资源等等,创建和切换的开销比较大: 线程是轻量级的进程,调度的最小单元,同一个 ...
- One-to-one
创建模型 在本例中,Place 和 Restaurant 为一对一关系 from django.db import models class Place(models.Model): name = m ...
- iOS UITextView点击事件处理
自定义一个UITextView UITextView 的selectedRange 影响 selectedTextRange 改变前者可影响后者 self.selectedRange -->se ...