poj 1106 Transmitters (枚举+叉积运用)
题目链接:http://poj.org/problem?id=1106
算法思路:由于圆心和半径都确定,又是180度,这里枚举过一点的直径,求出这个直径的一个在圆上的端点,就可以用叉积的大于,等于,小于0判断点在直径上,左,右。 这里要记录直径两边的加直径上的点的个数,去最大的。
代码:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std; const double eps = 1e-;
const double PI = acos(-1.0);
const double INF = 1000000000000000.000; struct Point{
double x,y;
Point(double x=, double y=) : x(x),y(y){ } //构造函数
};
typedef Point Vector; struct Circle{
Point c;
double r;
Circle() {}
Circle(Point c,double r): c(c),r(r) {}
};
Vector operator + (Vector A , Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator - (Vector A , Vector B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator * (double p,Vector A){return Vector(A.x*p,A.y*p);}
Vector operator / (Vector A , double p){return Vector(A.x/p,A.y/p);} bool operator < (const Point& a,const Point& b){
return a.x < b.x ||( a.x == b.x && a.y < b.y);
} int dcmp(double x){
if(fabs(x) < eps) return ;
else return x < ? - : ;
}
bool operator == (const Point& a, const Point& b){
return dcmp(a.x - b.x) == && dcmp(a.y - b.y) == ;
} ///向量(x,y)的极角用atan2(y,x);
inline double Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y; }
inline double Length(Vector A) { return sqrt(Dot(A,A)); }
inline double Angle(Vector A, Vector B) { return acos(Dot(A,B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y * B.x; }
Vector vecunit(Vector v){ return v / Length(v);} //单位向量 Point read_point(){
Point A;
scanf("%lf %lf",&A.x,&A.y);
return A;
} //多边形
//求面积
double PolygonArea(Point* p,int n){ //n个点
double area = ;
for(int i=;i<n-;i++){
area += Cross(p[i]-p[],p[i+]-p[]);
}
return area/;
} /*************************************分 割 线*****************************************/ int main()
{
//freopen("E:\\acm\\input.txt","r",stdin); Point O,P[];
double R; while(scanf("%lf %lf %lf",&O.x,&O.y,&R) == && dcmp(R)>)
{
int N;
cin>>N;
int cnt = ;
for(int i=;i<=N;i++)
{
Point temp = read_point();
double len = Length(temp-O);
if(dcmp(len-R) > ) continue;
P[++cnt] = temp;
}
int ans = ;
for(int i=; i<=cnt; i++)
{
if(P[i] == O)
{
ans = max(ans,);
continue;
}
int lnum = ;
int rnum = ;
Vector v = P[i] - O;
v = (-1.0)*vecunit(v);
Point T = O + R*v;
for(int j=; j<=cnt; j++)
{
if(i == j) continue;
if(dcmp(Cross(P[j]-T,O-T)) > ) lnum++;
else if(dcmp(Cross(P[j]-T,O-T)) == ) lnum++,rnum++;
else rnum++;
} int num = max(lnum,rnum);
ans = max(ans,num);
}
printf("%d\n",ans);
}
}
poj 1106 Transmitters (枚举+叉积运用)的更多相关文章
- Poj 1106 Transmitters
Poj 1106 Transmitters 传送门 给出一个半圆,可以任意旋转,问这个半圆能够覆盖的最多点数. 我们枚举每一个点作为必然覆盖点,那么使用叉积看极角关系即可判断其余的点是否能够与其存在一 ...
- poj 1106 Transmitters (叉乘的应用)
http://poj.org/problem?id=1106 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4488 A ...
- POJ 1106 Transmitters(计算几何)
题目链接 切计算几何,感觉计算几何的算法还不熟.此题,枚举线段和圆点的直线,平分一个圆 #include <iostream> #include <cstring> #incl ...
- poj 1873 凸包+枚举
The Fortified Forest Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 6198 Accepted: 1 ...
- POJ 3304 Segments【叉积】
题意:有n条线段,问有没有一条直线使得所有线段在这条直线上的投影至少有一个共同点. 思路:逆向思维,很明显这个问题可以转化为是否有一条直线穿过所有线段,若有,问题要求的直线与该直线垂直,并且公共点为垂 ...
- POJ 1018 【枚举+剪枝】.cpp
题意: 给出n个工厂的产品参数带宽b和价格p,在这n个工厂里分别选1件产品共n件,使B/P最小,其中B表示n件产品中最小的b值,P表示n件产品p值的和. 输入 iCase n 表示iCase个样例n个 ...
- POJ 3977 折半枚举
链接: http://poj.org/problem?id=3977 题意: 给你n个数,n最大35,让你从中选几个数,不能选0个,使它们和的绝对值最小,如果有一样的,取个数最小的 思路: 子集个数共 ...
- poj 1269 Intersecting Lines——叉积求直线交点坐标
题目:http://poj.org/problem?id=1269 相关知识: 叉积求面积:https://www.cnblogs.com/xiexinxinlove/p/3708147.html什么 ...
- poj 2318 TOYS & poj 2398 Toy Storage (叉积)
链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...
随机推荐
- Angularjs总结(七) 路由及请求服务等
define(['angular'], function (ng) { 'use strict'; var app = ng.module('index-module', ['ngCookies', ...
- Object-c 创建对象
创建对象有两种方法: 1. NSString *str = [NSString string]; 2. NSString *myStr = [[NSString alloc]init]; 第一种创建方 ...
- 3DTouch
3DTouch 一.主屏按压(Home Screen Quik Actions) 1.静态标签 在info.plist文件中新增项 关键字 意义 UIApplicationShortcutItems ...
- Java设计模式(学习整理)---命令模式
设计模式之Command(学习整理) 1.Command定义 不少Command模式的代码都是针对图形界面的,它实际就是菜单命令,我们在一个下拉菜单选择一个命令时,然后会执行一些动作. 将这些命令封装 ...
- C语言基础程序设计
1 概论 程序(指令和数据的集合)在运行时,首先会被加载到内存(此时称为进程),然后由CPU通过控制器的译码从内存中读取指令,并按照指令的要求,从存储器中取出数据进行指定的运算和逻辑操作等加工,然后再 ...
- 朋友的礼物(英雄会,csdn,高校俱乐部)信封问题,匹配模型
前言: 首先这是一题解,但是重点最代码之后,有耐心的可以直接从代码后看. 上题目:n个人,每个人都有一件礼物想送给他人,他们决定把礼物混在一起,然后每个人随机拿走一件,问恰好有m个人拿到的礼物恰好是自 ...
- boost::function实践——来自《Beyond the C++ Standard Library ( An Introduction to Boost )》
代码段1: #include <boost/function.hpp> #include <iostream> float mul_ints(int x, int y) { r ...
- 在js脚本里计算多个小数的加法问题
当在js脚本里计算多个小数的加法时,算得的结果往往会自动取整,这时候我们就应该加入以下代码: function toDecimal(x) { var val = Number(x); if (!isN ...
- paramiko学习
1. ssh简介 2. ssh私有key/共有key的区别 3. paramiko的常规使用
- 结合rpyc使用python实现动态升级的方法
动态升级,就是程序不退出的情况下,将其代码更新的策略.假设集群含有多个机器,然后每个机器部署一套程序,当升级的时候就要去所有的上面部署一把. (1)有个包装程序专门负责接口并检查是否需要更新,当需要更 ...