题目链接:http://poj.org/problem?id=1106

算法思路:由于圆心和半径都确定,又是180度,这里枚举过一点的直径,求出这个直径的一个在圆上的端点,就可以用叉积的大于,等于,小于0判断点在直径上,左,右。 这里要记录直径两边的加直径上的点的个数,去最大的。

代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std; const double eps = 1e-;
const double PI = acos(-1.0);
const double INF = 1000000000000000.000; struct Point{
double x,y;
Point(double x=, double y=) : x(x),y(y){ } //构造函数
};
typedef Point Vector; struct Circle{
Point c;
double r;
Circle() {}
Circle(Point c,double r): c(c),r(r) {}
};
Vector operator + (Vector A , Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator - (Vector A , Vector B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator * (double p,Vector A){return Vector(A.x*p,A.y*p);}
Vector operator / (Vector A , double p){return Vector(A.x/p,A.y/p);} bool operator < (const Point& a,const Point& b){
return a.x < b.x ||( a.x == b.x && a.y < b.y);
} int dcmp(double x){
if(fabs(x) < eps) return ;
else return x < ? - : ;
}
bool operator == (const Point& a, const Point& b){
return dcmp(a.x - b.x) == && dcmp(a.y - b.y) == ;
} ///向量(x,y)的极角用atan2(y,x);
inline double Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y; }
inline double Length(Vector A) { return sqrt(Dot(A,A)); }
inline double Angle(Vector A, Vector B) { return acos(Dot(A,B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y * B.x; }
Vector vecunit(Vector v){ return v / Length(v);} //单位向量 Point read_point(){
Point A;
scanf("%lf %lf",&A.x,&A.y);
return A;
} //多边形
//求面积
double PolygonArea(Point* p,int n){ //n个点
double area = ;
for(int i=;i<n-;i++){
area += Cross(p[i]-p[],p[i+]-p[]);
}
return area/;
} /*************************************分 割 线*****************************************/ int main()
{
//freopen("E:\\acm\\input.txt","r",stdin); Point O,P[];
double R; while(scanf("%lf %lf %lf",&O.x,&O.y,&R) == && dcmp(R)>)
{
int N;
cin>>N;
int cnt = ;
for(int i=;i<=N;i++)
{
Point temp = read_point();
double len = Length(temp-O);
if(dcmp(len-R) > ) continue;
P[++cnt] = temp;
}
int ans = ;
for(int i=; i<=cnt; i++)
{
if(P[i] == O)
{
ans = max(ans,);
continue;
}
int lnum = ;
int rnum = ;
Vector v = P[i] - O;
v = (-1.0)*vecunit(v);
Point T = O + R*v;
for(int j=; j<=cnt; j++)
{
if(i == j) continue;
if(dcmp(Cross(P[j]-T,O-T)) > ) lnum++;
else if(dcmp(Cross(P[j]-T,O-T)) == ) lnum++,rnum++;
else rnum++;
} int num = max(lnum,rnum);
ans = max(ans,num);
}
printf("%d\n",ans);
}
}

poj 1106 Transmitters (枚举+叉积运用)的更多相关文章

  1. Poj 1106 Transmitters

    Poj 1106 Transmitters 传送门 给出一个半圆,可以任意旋转,问这个半圆能够覆盖的最多点数. 我们枚举每一个点作为必然覆盖点,那么使用叉积看极角关系即可判断其余的点是否能够与其存在一 ...

  2. poj 1106 Transmitters (叉乘的应用)

    http://poj.org/problem?id=1106 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4488   A ...

  3. POJ 1106 Transmitters(计算几何)

    题目链接 切计算几何,感觉计算几何的算法还不熟.此题,枚举线段和圆点的直线,平分一个圆 #include <iostream> #include <cstring> #incl ...

  4. poj 1873 凸包+枚举

    The Fortified Forest Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6198   Accepted: 1 ...

  5. POJ 3304 Segments【叉积】

    题意:有n条线段,问有没有一条直线使得所有线段在这条直线上的投影至少有一个共同点. 思路:逆向思维,很明显这个问题可以转化为是否有一条直线穿过所有线段,若有,问题要求的直线与该直线垂直,并且公共点为垂 ...

  6. POJ 1018 【枚举+剪枝】.cpp

    题意: 给出n个工厂的产品参数带宽b和价格p,在这n个工厂里分别选1件产品共n件,使B/P最小,其中B表示n件产品中最小的b值,P表示n件产品p值的和. 输入 iCase n 表示iCase个样例n个 ...

  7. POJ 3977 折半枚举

    链接: http://poj.org/problem?id=3977 题意: 给你n个数,n最大35,让你从中选几个数,不能选0个,使它们和的绝对值最小,如果有一样的,取个数最小的 思路: 子集个数共 ...

  8. poj 1269 Intersecting Lines——叉积求直线交点坐标

    题目:http://poj.org/problem?id=1269 相关知识: 叉积求面积:https://www.cnblogs.com/xiexinxinlove/p/3708147.html什么 ...

  9. poj 2318 TOYS &amp; poj 2398 Toy Storage (叉积)

    链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...

随机推荐

  1. [Twisted] 部署Twisted

    Twisted提供了基础设施,来实现可重用.可配置的方式来部署. 1.Service Twisted使用Service来实现了许多协议,如TCP,FTP,HTTP,SSH等. 实现的IService接 ...

  2. php多行字符串输出

      $content_header =<<<CONTENT_HEADER <section class="content-header"> <h ...

  3. include()、include_once()与require()、require_once()的异同点

    相同点: 首先include().include_once()与require().require_once()都是用来包含并运行指定文件的,并且包含的文件在执行时在结构上是完全一样的. 例如:inc ...

  4. PHPCMS实现文章置顶功能的方法

    我个人喜欢把PHPCMS当作博客来用,而作为一个博客,怎能少了文章置顶功能呢?其中用PHPCMS实现置顶功能非常简单,无非是修改下推荐位的名称为置顶,然后在文章列表中推送需要置顶的文章罢了. 不过博客 ...

  5. How to install Pygame for Python 3.4 on Ubuntu 14.04(转)

    First run this to install dependencies: sudo apt-get install mercurial python3-dev python3-numpy \ l ...

  6. ListView的setOnItemClickListener和setOnItemLongClickListener同时响应的问题

    lvContentList.setOnItemClickListener(new OnItemClickListener() { @Override public void onItemClick(A ...

  7. 学习Swift -- 继承

    继承 一个类可以继承另一个类的方法(methods),属性(properties)和其它特性.当一个类继承其它类时,继承类叫子类,被继承类叫超类(父类). 在 Swift 中,子类可以调用和访问父类的 ...

  8. bzoj 2631: tree 动态树+常数优化

    2631: tree Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1716  Solved: 576[Submit][Status] Descrip ...

  9. <jsp:forward>、requestDispatcher和sendRedirect()的区别

    1.会话信息保存在服务器内存上,可以断续访问,和cookie相比,其保存在服务器上. 2.男人就像蓝牙:只有在你接近时,他才会找上你.当你离开后,他便又去找其他的"设备"了.女人就 ...

  10. node场景

    http://www.zhihu.com/question/19653241 http://www.csdn.net/article/2012-05-03/2805296 http://limu.it ...