[Poj3133]Manhattan Wiring (插头DP)
Description
题目大意:给你个N x M(1≤N, M≤9)的矩阵,0表示空地,1表示墙壁,2和3表示两对关键点。现在要求在两对关键点之间建立两条路径,其中两条路径不可相交或者自交(就是重复经过同一格子),并且不能经过墙壁,路径只能从一个格子走到相邻的下一格子。求两条路径最少需要经过的格子数减二。如果不存在解,输出0。
Solution
插头DP,用三进制来表示轮廓线,0表示没有插头,1表示“2”的的插头,2表示“3”的插头
- 对于0的格子:00 -> 00,11,22;01/10 -> 01/10;02/20 -> 02/20;11/22 -> 00。
- 对于1的格子:00 -> 00。
- 对于2的格子:01/10 -> 00,00 -> 01/10。
- 对于3的格子:02/20 -> 00,00 -> 02/20。
但是if太多会超时,所以有必要减少if语句的使用
Code
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 11
using namespace std;
const int A[]={1,3,9,27,81,243,729,2187,6561,19683,59049};
int n,m,g[N][N],dp[N][N][59049];
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int main(){
while(~scanf("%d%d",&n,&m)&&n+m){
memset(g,0,sizeof(g));
memset(dp,0x3f,sizeof(dp));
for(int i=1;i<=n;++i)for(int j=1;j<=m;++j)g[i][j]=read();
dp[0][m][0]=0;
for(int i=1;i<=n;++i){
for(int j=0;j<A[m];++j)//A[m]
dp[i][0][j*3]=dp[i-1][m][j];
for(int j=1;j<=m;++j){
for(int k=0;k<A[m+1];++k){//A[m+1]
if (j==m&&k>=A[m]) break;
int a=(k/A[j-1])%3,b=(k/A[j])%3;
if(g[i][j]==1){
if(a==0&&b==0) dp[i][j][k]=dp[i][j-1][k];
}else if(g[i][j]==2){//min,+1
if(a==1&&b==0) dp[i][j][k]=dp[i][j-1][k-A[j-1]]+1;
else if(a==0&&b==1) dp[i][j][k]=dp[i][j-1][k-A[j]]+1;
else if(a==0&&b==0) dp[i][j][k]=min(dp[i][j-1][k+A[j-1]],dp[i][j-1][k+A[j]])+1;
}else if(g[i][j]==3){
if(a==2&&b==0) dp[i][j][k]=dp[i][j-1][k-2*A[j-1]]+1;
else if(a==0&&b==2) dp[i][j][k]=dp[i][j-1][k-2*A[j]]+1;
else if(a==0&&b==0) dp[i][j][k]=min(dp[i][j-1][k+2*A[j-1]],dp[i][j-1][k+2*A[j]])+1;
}
else if(g[i][j]==0){
if(a==0&&b==0) dp[i][j][k]=min(dp[i][j-1][k],min(dp[i][j-1][k+A[j]+A[j-1]]+1,dp[i][j-1][k+2*A[j]+2*A[j-1]]+1));
else if(a==0&&b>0) dp[i][j][k]=min(dp[i][j-1][k],dp[i][j-1][k+b*A[j-1]-b*A[j]])+1;
else if(a>0&&b==0) dp[i][j][k]=min(dp[i][j-1][k],dp[i][j-1][k+a*A[j]-a*A[j-1]])+1;
else if(a&&b&&a==b) dp[i][j][k]=dp[i][j-1][k-a*A[j]-a*A[j-1]]+1;
}
if (i==n&&j==m) break;
}
}
}
if(dp[n][m][0]<0x3f3f3f3f) printf("%d\n",dp[n][m][0]-2);
else printf("0\n");
}
return 0;
}
[Poj3133]Manhattan Wiring (插头DP)的更多相关文章
- uva1214 Manhattan Wiring 插头DP
There is a rectangular area containing n × m cells. Two cells are marked with “2”, and another two w ...
- poj3133 Manhattan Wiring
Manhattan Wiring Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 2016 Accepted: 1162 ...
- POJ 3133 Manhattan Wiring (插头DP,轮廓线,经典)
题意:给一个n*m的矩阵,每个格子中有1个数,可能是0或2或3,出现2的格子数为2个,出现3的格子数为2个,要求将两个2相连,两个3相连,求不交叉的最短路(起终点只算0.5长,其他算1). 思路: 这 ...
- 【poj3133】 Manhattan Wiring
http://poj.org/problem?id=3133 (题目链接) 题意 $n*m$的网格里有空格和障碍,还有两个$2$和两个$3$.要求把这两个$2$和两个$3$各用一条折线连起来.障碍里不 ...
- 插头DP专题
建议入门的人先看cd琦的<基于连通性状态压缩的动态规划问题>.事半功倍. 插头DP其实是比较久以前听说的一个东西,当初是水了几道水题,最近打算温习一下,顺便看下能否入门之类. 插头DP建议 ...
- 「总结」插头$dp$
集中做完了插头$dp$ 写一下题解. 一开始学的时候还是挺蒙的. 不过后来站在轮廓线$dp$的角度上来看就简单多了. 其实就是一种联通性$dp$,只不过情况比较多而已了. 本来转移方式有两种.逐行和逐 ...
- [入门向选讲] 插头DP:从零概念到入门 (例题:HDU1693 COGS1283 BZOJ2310 BZOJ2331)
转载请注明原文地址:http://www.cnblogs.com/LadyLex/p/7326874.html 最近搞了一下插头DP的基础知识……这真的是一种很锻炼人的题型…… 每一道题的状态都不一样 ...
- 初探插头dp
开学那个月学了点新东西,不知道还记不记得了,mark一下 感觉cdq的论文讲的很详细 题主要跟着kuangbin巨做了几道基础的 http://www.cnblogs.com/kuangbin/arc ...
- [LA3620]Manhattan Wiring
[LA3620]Manhattan Wiring 试题描述 输入 输出 输入示例 输出示例 数据规模及约定 见“输入” 题解 我们把“连线”的过程改为“铺地砖”的过程,总共有 11 种地砖,每种地砖上 ...
随机推荐
- ADO学习笔记之注入漏洞与参数化查询
ADO学习笔记之注入漏洞与参数化查询 作为新手,在学习ADO程序时,使用 sql 语言查询数据时,很容易写类似如下代码: using (SqlConnection con = new SqlConne ...
- ElasticSearch 处理自然语言流程
ES处理人类语言 ElasticSearch提供了很多的语言分析器,这些分析器承担以下四种角色: 文本拆分为单词 The quick brown foxes → [ The, quick, brown ...
- java 读取环境变量和系统变量的方法
在web开发的过程中不免需要读取一些自定义的jvm系统变量或者环境变量.比如定义一些通用的log文件.或者数据库访问路径. 我们可以使用System.getProperties()读取所有的系统变量. ...
- vue地址插件多级联动自适应 + github地址
https://github.com/cqzyl/vue-manyAddress
- CF1152C Neko does Maths
思路: 假设a <= b,lcm(a + k, b + k) = (a + k) * (b + k) / gcd(a + k, b + k) = (a + k) * (b + k) / gcd( ...
- css钻石旋转实现
css钻石旋转实现: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> &l ...
- Google pieCharts的学习
在公司项目开发过程中, 尤其是在网站的开发过程中,用到很多的前端的插件,在这里, 我简单介绍下近期Google pieCharts的是使用方法 https://developers.google.co ...
- Notification高级技巧
观察Notification这个类,你会发现里面还有很多我们没有使用过的属性.先来看看sound这个属性吧,它可以在通知发出的时候播放一段音频,这样就能够更好地告知用户有通知到来.sound 这个属性 ...
- 更新浏览器,导致编写脚本报错Message: Unable to find a matching set of capabilities
卸载更新浏览器后,所编写的脚本无法运行,报如下的错误:selenium.common.exceptions.WebDriverException: Message: Unable to find a ...
- 未能加载文件或程序集“System.Web.Http, Version=5.1.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35”或它的某一个依赖项。找到的程序集清单定义与程序集引用不匹配。 (异常来自 HRESULT:0x80131040)解决办法
1.查看引用处是否确实引用, 2.查看<runtime> <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1& ...