loj2143 「SHOI2017」组合数问题
大傻逼题……就是求 \(nk\) 个元素选出一些元素,选出的元素的个数要满足模 \(k\) 余 \(r\),求方案数。
想到 \(\binom{n}{m}=\binom{n-1}{m-1}+\binom{n-1}{m}\),递推取模就是了……
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
int n, p, k, r;
struct Matrix{
int num[55][55];
Matrix operator*(const Matrix &x)const{
Matrix re;
for(int i=0; i<k; i++)
for(int j=0; j<k; j++){
re.num[i][j] = 0;
for(int l=0; l<k; l++)
re.num[i][j] = (re.num[i][j] + (ll)num[i][l]*x.num[l][j]) % p;
}
return re;
}
}dan, zhu, yua;
Matrix ksm(ll b){
while(b){
if(b&1) dan = dan * zhu;
zhu = zhu * zhu;
b >>= 1;
}
return dan;
}
int main(){
cin>>n>>p>>k>>r;
for(int i=0; i<k; i++){
dan.num[i][i] = zhu.num[i][i] = 1;
zhu.num[(i-1+k)%k][i]++;
}
yua.num[0][0] = 1;
cout<<(yua*ksm((ll)n*k)).num[0][r]<<endl;
return 0;
}
loj2143 「SHOI2017」组合数问题的更多相关文章
- loj #2143. 「SHOI2017」组合数问题
#2143. 「SHOI2017」组合数问题 题目描述 组合数 Cnm\mathrm{C}_n^mCnm 表示的是从 nnn 个互不相同的物品中选出 mmm 个物品的方案数.举个例子, 从 ...
- LOJ2557. 「CTSC2018」组合数问题
LOJ2557. 「CTSC2018」组合数问题 这道题是我第一道自己做完的题答题.考场上面我只拿了41分,完全没有经验.现在才发现其实掌握了大概的思路还是不难. 首先模拟退火,通过了1,2,6,9, ...
- 【LOJ 2145】「SHOI2017」分手是祝愿
LOJ 2145 100pts 这题...BT啊 首先我们很容易想出\(dp(msk)\)表示现在灯开关的情况是\(msk\),期望通过多少步走到终结态. 很明显\(dp(msk)=\frac{1}{ ...
- 【LOJ 2144】「SHOI2017」摧毁「树状图」
LOJ 2144 84pts 首先\(op2\)很简单.直接并查集一搞就好了(话说我现在什么东西都要写个并查集有点...) 然后\(op0\)我不会,就直接\(O(n^2)\)枚举一下\(P\)这个人 ...
- LOJ #2142. 「SHOI2017」相逢是问候(欧拉函数 + 线段树)
题意 给出一个长度为 \(n\) 的序列 \(\{a_i\}\) 以及一个数 \(p\) ,现在有 \(m\) 次操作,每次操作将 \([l, r]\) 区间内的 \(a_i\) 变成 \(c^{a_ ...
- LOJ #2145. 「SHOI2017」分手是祝愿
题目链接 LOJ #2145 题解 一道画风正常的--期望DP? 首先考虑如何以最小步数熄灭所有灯:贪心地从大到小枚举灯,如果它亮着则修改它.可以求出总的最小步数,设为\(cnt\). 然后开始期望D ...
- LOJ #2141. 「SHOI2017」期末考试
题目链接 LOJ #2141 题解 据说这道题可以三分(甚至二分)? 反正我是枚举的 = = 先将t和b数组排序后计算出前缀和, 然后枚举最晚的出成绩时间,每次可以O(1)直接计算调整到该时间所需的代 ...
- loj2145 「SHOI2017」分手是祝愿
记 \(f_i\) 是从要做 \(i\) 步好操作变成要做 \(i-1\) 步好操作的期望操作次数. 显然 \(f_i=i/n \times 1 + (1-i/n) \times (1 + f_{i+ ...
- loj2141 「SHOI2017」期末考试
我们枚举每一个时间点,使得所有科目的时间都小于等于这个时间点,计算安排老师的代价和学生们的不满意度更新答案. 但是枚举太慢了,可以发现,时间点越早,学生们不满意度越小,安排老师的代价越高.即安排老师的 ...
随机推荐
- mybatis内置二级缓存。
一.查询缓存的使用,主要是为了提供查询访问速度.将用户对同一数据的重复查询过程简化, 不再每次均从数据库查询获取结果数据,从而提高访问速度. 二.内置二级缓存... 由于MyBatista从缓存中读取 ...
- [问题记录]Ubuntu下chmsee安装失败的解决
日期:2016年2月26日 一直在找Ubuntu下查看chm的工具但是普遍不理想,发现在deepin中的chmsee相对比较好,但是直接执行网上的sudo apt-get install chmsee ...
- 洛谷[LnOI2019]长脖子鹿省选模拟赛t1 -> 快速多项式变换
快速多项式 做法:刚拿到此题有点蒙,一开始真没想出来怎么做,于是试着去自己写几个例子. 自己枚举几种情况之后就基本看出来了,其实本题中 n 就是f(m)在m进制下的位数,每项的系数就是f(m)在m进制 ...
- JSP界面设置提示浮动框
1.公共js <script type="text/javascript"> var tip={ $:function(ele){ if(typeof(ele)==&q ...
- PaaS基础学习(1)
PaaS基础学习(1) PaaS学习笔记目录 PaaS基础学习(1) 在PaaS上开发Web.移动应用(2) PaaS优点与限制(3) 1. 基础单元,一个基础单元就是所研究实体的最小的不可分割的单元 ...
- openssl安装介绍
#因CentOS7默认安装了openssl1.0版本,需要删除该版本,才能安装openssl.1.0.2l版本yum remove -y openssl openssl-devel cd /usr/l ...
- mysql IF语句使用
类似于三元运算符 1) IF(where,result1,result2) = where?result1:result2 例如 SELECT IF(1=1,1,2) => 1 2) ...
- strophe.js 插件 XMPP openfire
参考资料:http://strophe.im/strophejs/ https://github.com/strophe/strophejs-plugins http://amazeui.org/ 最 ...
- vue的使用-项目总结
1,这是一个重前端逻辑,轻交互,数据展示的项目,可读性差,2,组件划分的坑,复用过多的坑,复用过多导致要在js手动判断太多东西,不便于可读3,vuex的坑,数据分为后台请求数据的暂存,前端页面逻辑的状 ...
- charles连接手机抓包--------最详细的步骤
首先确保电脑和手机连接到同一个热点上 电脑连接热点以后,首先打开Charles设置Charles的setting port一般都默认8888 Enable transparent HTTP proxy ...