• [1672] 剪绳子

  • 时间限制: 500 ms 内存限制: 65535 K
  • 问题描述
  • 已知长度为n的线圈,两人依次截取1~m的长度,n, m为整数,不能取者为输。

  • 输入
  • 输入n, m;( 0 <= n <= 1000000000, 1 <= m <= 1000000000)
  • 输出
  • 先手胜输出First,否者输出Second。
  • 样例输入
  • 3 2
    1 1
  • 样例输出
  • Second
    First

    做法:

    除特判外正常情况下First将一个绳环取掉一段,变成一根绳子,然后Second将

    这根绳子再取掉一部分,变成两段,那么接下来不管First怎么取,Second一直模仿着

    First取就一定能赢,此题刚开始以为是跟巴什博弈,经过大神指点发现不同点在于巴

    什博弈若放在此题这两人从头到尾将会是共用一根绳子而且只能从两边开始截即绳子

    不会变成两段。但是这道题是可以任意截取1~m范围内的长度,隐藏了一点就是一个

    人最多只能截完他选的那一段绳子,即就算可以截1~1000000米的长度,然而现在的

    绳子只有1、2、3米各一段,也只能截1、2、3米中的一种,无形之中又限定了截取的

    范围,这样一来Second才有更大的机会赢。

    然后看正常情况下只要在First将绳环截成一段绳子之后Second可以将这段绳子分

    成两段那么Second就一定赢了,因此判断点在于Second能否成功分掉绳子。

    代码:

    #include<iostream>
    #include<algorithm>
    #include<cstdlib>
    #include<sstream>
    #include<cstring>
    #include<cstdio>
    #include<string>
    #include<deque>
    #include<cmath>
    #include<queue>
    #include<set>
    #include<map>
    using namespace std;
    int main(void)
    {
    int n,m;
    while (~scanf("%d%d",&n,&m))
    {
    if(n==0)//特判
    printf("Second\n");
    else if(m==1)//特判
    {
    if(n&1)
    printf("First\n");
    else
    printf("Second\n");
    }
    else if(m>=n)//特判
    printf("First\n");
    else//一般情况,Second最差情况下取1就能分两段
    printf("Second\n");
    }
    return 0;
    }

NOJ——1672剪绳子(博弈)的更多相关文章

  1. 【Java】 剑指offer(13) 剪绳子

    本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 给你一根长度为n绳子,请把绳子剪成m段(m.n都是整数,n> ...

  2. 《剑指offer》第十四题(剪绳子)

    // 面试题:剪绳子 // 题目:给你一根长度为n绳子,请把绳子剪成m段(m.n都是整数,n>1并且m≥1). // 每段的绳子的长度记为k[0].k[1].…….k[m].k[0]*k[1]* ...

  3. 剑指offer——面试题14:剪绳子

    // 面试题14:剪绳子 // 题目:给你一根长度为n绳子,请把绳子剪成m段(m.n都是整数,n>1并且m≥1). // 每段的绳子的长度记为k[0].k[1].…….k[m].k[0]*k[1 ...

  4. 【Python】剑指offer 14:剪绳子

    题目:给你一根长度为n的绳子,请把绳子剪成m段 (m和n都是整数,n>1并且m>1)每段绳子的长度记为k[0],k[1],-,k[m].请问k[0]k[1]-*k[m]可能的最大乘积是多少 ...

  5. 【剑指offer】面试题 14. 剪绳子

    面试题 14. 剪绳子 LeetCode 题目描述 给你一根长度为 n 的绳子,请把绳子剪成 m 段(m.n 都是整数,n>1 并且 m>1),每段绳子的长度记为 k[0],k[1],·· ...

  6. 剑指offer——15剪绳子

    题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1]x...xk[m]可能 ...

  7. [剑指offer]14-1.剪绳子

    14-1.剪绳子 方法一 动态规划 思路:递归式为f(n)=max(f(i), f(n-i)),i=1,2,...,n-1 虽然我现在也没有彻底明白这个递归式是怎么来的,但用的时候还是要注意一下.f( ...

  8. 剑指 Offer 14- II. 剪绳子 II + 贪心 + 数论 + 快速幂

    剑指 Offer 14- II. 剪绳子 II 题目链接 因为有取模的操作,动态规划中max不能用了,我们观察:正整数从1开始,但是1不能拆分成两个正整数之和,所以不能当输入. 2只能拆成 1+1,所 ...

  9. 剑指 Offer 14- I. 剪绳子 + 动态规划 + 数论

    剑指 Offer 14- I. 剪绳子 题目链接 还是343. 整数拆分的官方题解写的更清楚 本题说的将绳子剪成m段,m是大于1的任意一个正整数,也就是必须剪这个绳子,至于剪成几段,每一段多长,才能使 ...

随机推荐

  1. UVA 11214 Guarding the Chessboard 守卫棋盘(迭代加深+剪枝)

    暴力,和八皇后很像,用表示i+j和i-j标记主对角线,但是还是要加一些的剪枝的. 1.最裸的暴搜 6.420s,差点超时 2.之前位置放过的就没必要在放了,每次从上一次放的位置开始放 0.400s # ...

  2. vue 文件流下载xlsx 功能实现

    downLoadFile (url, name) { this.xhr = new XMLHttpRequest() this.xhr.open('GET', url, true) this.xhr. ...

  3. Tarjan 详解

    Tarjan 算法 一.算法简介 Tarjan 算法一种由Robert Tarjan提出的求解有向图强连通分量的算法,它能做到线性时间的复杂度. 我们定义: 如果两个顶点可以相互通达,则称两个顶点强连 ...

  4. Dojo的declare接口

    declare(classname,[],{}) declare的第一个参数是可选的,代表类的名称 declare的第二个参数代表类的继承关系,比如继承哪一个父类,可以看到:第二个参数是一个数组,所以 ...

  5. 解决AjaxFileUpload中文化/国际化的问题。

    由微软官方提供的AjaxControlToolKit,在ASP.NET开发过程中,确实能够给开发者带来很多的便利,节约开发者的重复劳动.这套控件也是比较成熟的,在性能方面也不会太差,至少能够满足一般开 ...

  6. mysql 安装简介

    Linux: 安装 [root @ localhost ~]# yum install mysql-server 设定为开机自动启动 [root @ localhost ~]# chkconfig m ...

  7. 【模拟】HHHOJ#251. 「NOIP模拟赛 伍」高精度

    积累模拟经验 题目描述 维护一个二进制数,支持如下操作 "+" 该数加 11 "-" 该数减 11 "*" 该数乘 22 "\&q ...

  8. 03等待多个线程返回WaitForMultipleObject

    二. WaitForMultipleObject 等待单个线程返回 1. 函数原型 DWORD WINAPI WaitForMultipleObjects( _In_ DWORD nCount, _I ...

  9. Laravel核心解读--Console内核

    Console内核 上一篇文章我们介绍了Laravel的HTTP内核,详细概述了网络请求从进入应用到应用处理完请求返回HTTP响应整个生命周期中HTTP内核是如何调动Laravel各个核心组件来完成任 ...

  10. OwinStartupAttribute出错

    尝试加载应用时出现了以下错误.- 找不到包含 OwinStartupAttribute 的程序集.- 找不到包含 Startup 或 [AssemblyName].Startup 类的程序集.若要禁用 ...