题目

给定一棵大小为 \(n\) 的树,每个点代表一种物品,其具有体积、价值和数量的属性,

现在选择一个连通块,使得里面所有点都被选中且体积不超过 \(m\),问最大价值。

\(n\leq 500,m\leq 4000\)


分析

树形背包比较难维护,考虑用dfs序拍平到序列上,并且多重背包直接二进制拆分。

设 \(dp[i][j]\) 表示dfs序为 \(i\),且选择体积为 \(j\) 时能获得的最大价值。

如果不选这个点,那么 \(dp[i][j]=dp[rfn[i]][j]\),\(rfn\) 表示这个点的下一个兄弟的dfs序

如果选择这个点,那么 \(dp[i][j]=\max\{dp[i+1][j-w]+c\}\)

但有一个问题就是这样会变成01背包,考虑先用上式更新一次(强制必选一个),再用 \(dp[i][j-w]\) 更新。

就是在二进制拆分时先拆一个再正常拆,发现这样根节点强制必选,那么跑点分治,所有连通块都能被以当前根节点的情况所表示。

可以通过二进制拆分的个数来决定点的大小求带权重心,这样时间复杂度为 \(O(Tnm\log n\log m)\)


代码

#include <cstdio>
#include <cctype>
using namespace std;
const int N=511; struct node{int y,next;}e[N<<1]; struct rec{int w,c;}a[N<<3];
int siz[N],big[N],as[N],L[N],R[N],w[N],c[N],ans,root,tot,v[N],dfn[N],nfd[N],rfn[N],et=1,n,m,k,dp[N][N<<3];
int iut(){
int ans=0; char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans;
}
void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
void Max(int &x,int y){x=x>y?x:y;}
void dfs(int x,int fa){
siz[x]=R[x]-L[x]+1,big[x]=0;
for (int i=as[x];i;i=e[i].next)
if (e[i].y!=fa&&!v[e[i].y]){
dfs(e[i].y,x),siz[x]+=siz[e[i].y];
Max(big[x],siz[e[i].y]);
}
Max(big[x],big[0]-siz[x]);
if (big[x]<=big[root]) root=x;
}
void calc(int x,int fa){
dfn[x]=++tot,nfd[tot]=x;
for (int i=as[x];i;i=e[i].next)
if (e[i].y!=fa&&!v[e[i].y])
calc(e[i].y,x);
rfn[x]=tot+1;
}
void Dp(int x){
v[x]=1,tot=0,calc(x,0);
for (int i=0;i<=k;++i) dp[tot+1][i]=0;
for (int i=tot;i;--i){
int x=nfd[i];
for (int j=0;j<=k;++j) dp[i][j]=dp[rfn[x]][j];
for (int j=k;j>=w[x];--j)
Max(dp[i][j],dp[i+1][j-w[x]]+c[x]);
for (int o=R[x];o>L[x];--o)
for (int j=k;j>=a[o].w;--j)
Max(dp[i][j],dp[i][j-a[o].w]+a[o].c);
}
Max(ans,dp[1][k]);
for (int i=as[x];i;i=e[i].next)
if (!v[e[i].y]){
big[0]=siz[e[i].y];
dfs(e[i].y,root=0),Dp(root);
}
}
int main(){
for (int T=iut();T;--T){
n=iut(),k=iut(),ans=m=0,et=1;
for (int i=1;i<=n;++i) c[i]=iut();
for (int i=1;i<=n;++i) w[i]=iut();
for (int i=1;i<=n;++i){
int x=iut(); L[i]=R[i-1]+1;
a[++m]=(rec){w[i],c[i]},--x;
for (int t=1;x>=t;x-=t,t<<=1)
a[++m]=(rec){w[i]*t,c[i]*t};
if (x) a[++m]=(rec){w[i]*x,c[i]*x};
R[i]=m;
}
for (int i=1;i<n;++i){
int x=iut(),y=iut();
e[++et]=(node){y,as[x]},as[x]=et;
e[++et]=(node){x,as[y]},as[y]=et;
}
big[0]=m,dfs(1,root=0),Dp(root);
print(ans),putchar(10);
for (int i=1;i<=n;++i) v[i]=as[i]=0;
}
return 0;
}

#树形依赖背包,点分治#BZOJ 4182 Shopping的更多相关文章

  1. BZOJ.4182.Shopping(点分治/dsu on tree 树形依赖背包 多重背包 单调队列)

    BZOJ 题目的限制即:给定一棵树,只能任选一个连通块然后做背包,且每个点上的物品至少取一个.求花费为\(m\)时最大价值. 令\(f[i][j]\)表示在点\(i\),已用体积为\(j\)的最大价值 ...

  2. BZOJ.4910.[SDOI2017]苹果树(树形依赖背包 DP 单调队列)

    BZOJ 洛谷 \(shadowice\)已经把他的思路说的很清楚了,可以先看一下会更好理解? 这篇主要是对\(Claris\)题解的简单说明.与\(shadowice\)的做法还是有差异的(比如并没 ...

  3. bzoj4753: [Jsoi2016]最佳团体(分数规划+树形依赖背包)

    菜菜推荐的“水题”虐了我一天T T...(菜菜好强强qwq~ 显然是个分数规划题,二分答案算出p[i]-mid*s[i]之后在树上跑依赖背包,选k个最大值如果>0说明还有更优解. 第一次接触树形 ...

  4. Gym - 100502G Outing (强连通缩点+树形依赖背包)

    题目链接 问题:有n个人,最多选k个,如果选了某个人就必须选他指定的另一个人,问最多能选多少个人. 将每个人所指定的人向他连一条单向边,则每一个点都有唯一的前驱,形成的图是个基环树森林,在同一个强连通 ...

  5. RNQOJ [stupid]愚蠢的矿工(树形依赖背包)

    题意 题目链接 Sol 树形依赖背包板子题 树形依赖背包大概就是说:对于一个点,只有选了它的父亲才能选自身 把dfs序建出来,倒过来考虑 设\(f[i][j]\)表示从第\(i\)个节点往后背包体积为 ...

  6. 【bzoj2427】【软件安装】tarjan缩点+树形依赖背包

    (上不了p站我要死了,侵权度娘背锅) Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上, ...

  7. 【LuoguP1273有线电视网】树形依赖背包

    参考论文http://wenku.baidu.com/view/8ab3daef5ef7ba0d4a733b25.html 参考一篇写的很好的博文http://www.cnblogs.com/GXZC ...

  8. BZOJ 4182 Shopping (点分治+树上多重背包)

    题目大意:给你一颗树,你有$m$元钱,每个节点都有一种物品,价值为$w$,代价为$c$,有$d$个,如果在$u$和$v$两个城市都购买了至少一个物品,那么$u,v$路径上每个节点也都必须买至少一个物品 ...

  9. AcWing 286. 选课 (树形依赖分组背包)打卡

    有依赖的背包 首先依赖的概念,就是一个东西依附与一个东西之上,我们想买附品的话必须要把主品先买下来,这个可以先做下这道题 https://www.cnblogs.com/Lis-/p/11047466 ...

  10. 【HDU 4276】The Ghost Blows Light(树形DP,依赖背包)

    The Ghost Blows Light Problem Description My name is Hu Bayi, robing an ancient tomb in Tibet. The t ...

随机推荐

  1. Redis原理再学习01:数据结构-跳跃表skiplist

    跳跃表skiplist 简介 你一定比较好奇Redis里面的 sorted set 是怎么实现的,底层到底是什么?它的排序功能就是用到了这个skiplist-跳跃表. 什么是跳跃表? 跳跃表可以看做是 ...

  2. defaultdict高级用法

    说明 defaultdict数据结构允许调用者提供一个函数,用来在键名缺失的情况下,创建与这个 键对应的值.只要字典发现调用者想要访问的键不存在,就会触发这个函数,以返回应该 与键相关联的默认值 下面 ...

  3. Java新建一个子线程异步运行方法

    如何在运行主方法的同时异步运行另一个方法,我是用来更新缓存: 1. 工具类 public class ThreadPoolUtils { private static final Logger LOG ...

  4. 全表查询sql执行链路排查

    问题描述: 发现有sql查询全表数据,慢查询语句,根据druid上的sql监控查看到. 主要根据标红的列确定问题sql. 点击进去可以看到详细sql信息. 问题排查目标: 发现这个语句高层调用方特别多 ...

  5. 图数据库实操:用 Nebula Graph 破解成语版 Wordle 谜底

    本文首发于 Nebula Graph Community 公众号 春节期间如果有小伙伴玩过 Wordle 这个火爆社交媒体的猜词游戏,可能对成语版本的汉兜有所耳闻.在玩汉兜过程中,我发现用 Nebul ...

  6. VC-MFC 登陆界面 + 数据库账号+密码

    1 // DlgUser.cpp : 实现文件 2 // 3 4 #include "stdafx.h" 5 #include "Login.h" 6 #inc ...

  7. 2、hystrix原理

    hystrix熔断机制 1.隔离机制 线程隔离: Hystrix在用户请求和服务之间加入了线程池. Hystrix为每个依赖调用分配一个小的线程池,如果线程池已满调用将被立即拒绝,默认不采用排队.加速 ...

  8. C++中OpenCV、Armadillo矩阵数据格式的转换方式

      本文介绍在C++语言中,矩阵库Armadillo的mat.vec格式数据与计算机视觉库OpenCV的Mat格式数据相互转换的方法.   在C++语言的矩阵库Armadillo与计算机视觉库Open ...

  9. 【EasyExcel详细步骤】(内附源码)

    页面预览 数据导出 数据导入 第01章-Alibaba EasyExcel 1.EasyExcel介绍 1.1.EasyExcel的作用 数据导入:减轻录入工作量 数据导出:统计信息归档 数据传输:异 ...

  10. .npmrc 项目的 默认安装配置

    .npmrc registry=http://192.168.77.105:8081/nexus/content/groups/npm-all/