题目

给定一棵大小为 \(n\) 的树,每个点代表一种物品,其具有体积、价值和数量的属性,

现在选择一个连通块,使得里面所有点都被选中且体积不超过 \(m\),问最大价值。

\(n\leq 500,m\leq 4000\)


分析

树形背包比较难维护,考虑用dfs序拍平到序列上,并且多重背包直接二进制拆分。

设 \(dp[i][j]\) 表示dfs序为 \(i\),且选择体积为 \(j\) 时能获得的最大价值。

如果不选这个点,那么 \(dp[i][j]=dp[rfn[i]][j]\),\(rfn\) 表示这个点的下一个兄弟的dfs序

如果选择这个点,那么 \(dp[i][j]=\max\{dp[i+1][j-w]+c\}\)

但有一个问题就是这样会变成01背包,考虑先用上式更新一次(强制必选一个),再用 \(dp[i][j-w]\) 更新。

就是在二进制拆分时先拆一个再正常拆,发现这样根节点强制必选,那么跑点分治,所有连通块都能被以当前根节点的情况所表示。

可以通过二进制拆分的个数来决定点的大小求带权重心,这样时间复杂度为 \(O(Tnm\log n\log m)\)


代码

#include <cstdio>
#include <cctype>
using namespace std;
const int N=511; struct node{int y,next;}e[N<<1]; struct rec{int w,c;}a[N<<3];
int siz[N],big[N],as[N],L[N],R[N],w[N],c[N],ans,root,tot,v[N],dfn[N],nfd[N],rfn[N],et=1,n,m,k,dp[N][N<<3];
int iut(){
int ans=0; char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans;
}
void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
void Max(int &x,int y){x=x>y?x:y;}
void dfs(int x,int fa){
siz[x]=R[x]-L[x]+1,big[x]=0;
for (int i=as[x];i;i=e[i].next)
if (e[i].y!=fa&&!v[e[i].y]){
dfs(e[i].y,x),siz[x]+=siz[e[i].y];
Max(big[x],siz[e[i].y]);
}
Max(big[x],big[0]-siz[x]);
if (big[x]<=big[root]) root=x;
}
void calc(int x,int fa){
dfn[x]=++tot,nfd[tot]=x;
for (int i=as[x];i;i=e[i].next)
if (e[i].y!=fa&&!v[e[i].y])
calc(e[i].y,x);
rfn[x]=tot+1;
}
void Dp(int x){
v[x]=1,tot=0,calc(x,0);
for (int i=0;i<=k;++i) dp[tot+1][i]=0;
for (int i=tot;i;--i){
int x=nfd[i];
for (int j=0;j<=k;++j) dp[i][j]=dp[rfn[x]][j];
for (int j=k;j>=w[x];--j)
Max(dp[i][j],dp[i+1][j-w[x]]+c[x]);
for (int o=R[x];o>L[x];--o)
for (int j=k;j>=a[o].w;--j)
Max(dp[i][j],dp[i][j-a[o].w]+a[o].c);
}
Max(ans,dp[1][k]);
for (int i=as[x];i;i=e[i].next)
if (!v[e[i].y]){
big[0]=siz[e[i].y];
dfs(e[i].y,root=0),Dp(root);
}
}
int main(){
for (int T=iut();T;--T){
n=iut(),k=iut(),ans=m=0,et=1;
for (int i=1;i<=n;++i) c[i]=iut();
for (int i=1;i<=n;++i) w[i]=iut();
for (int i=1;i<=n;++i){
int x=iut(); L[i]=R[i-1]+1;
a[++m]=(rec){w[i],c[i]},--x;
for (int t=1;x>=t;x-=t,t<<=1)
a[++m]=(rec){w[i]*t,c[i]*t};
if (x) a[++m]=(rec){w[i]*x,c[i]*x};
R[i]=m;
}
for (int i=1;i<n;++i){
int x=iut(),y=iut();
e[++et]=(node){y,as[x]},as[x]=et;
e[++et]=(node){x,as[y]},as[y]=et;
}
big[0]=m,dfs(1,root=0),Dp(root);
print(ans),putchar(10);
for (int i=1;i<=n;++i) v[i]=as[i]=0;
}
return 0;
}

#树形依赖背包,点分治#BZOJ 4182 Shopping的更多相关文章

  1. BZOJ.4182.Shopping(点分治/dsu on tree 树形依赖背包 多重背包 单调队列)

    BZOJ 题目的限制即:给定一棵树,只能任选一个连通块然后做背包,且每个点上的物品至少取一个.求花费为\(m\)时最大价值. 令\(f[i][j]\)表示在点\(i\),已用体积为\(j\)的最大价值 ...

  2. BZOJ.4910.[SDOI2017]苹果树(树形依赖背包 DP 单调队列)

    BZOJ 洛谷 \(shadowice\)已经把他的思路说的很清楚了,可以先看一下会更好理解? 这篇主要是对\(Claris\)题解的简单说明.与\(shadowice\)的做法还是有差异的(比如并没 ...

  3. bzoj4753: [Jsoi2016]最佳团体(分数规划+树形依赖背包)

    菜菜推荐的“水题”虐了我一天T T...(菜菜好强强qwq~ 显然是个分数规划题,二分答案算出p[i]-mid*s[i]之后在树上跑依赖背包,选k个最大值如果>0说明还有更优解. 第一次接触树形 ...

  4. Gym - 100502G Outing (强连通缩点+树形依赖背包)

    题目链接 问题:有n个人,最多选k个,如果选了某个人就必须选他指定的另一个人,问最多能选多少个人. 将每个人所指定的人向他连一条单向边,则每一个点都有唯一的前驱,形成的图是个基环树森林,在同一个强连通 ...

  5. RNQOJ [stupid]愚蠢的矿工(树形依赖背包)

    题意 题目链接 Sol 树形依赖背包板子题 树形依赖背包大概就是说:对于一个点,只有选了它的父亲才能选自身 把dfs序建出来,倒过来考虑 设\(f[i][j]\)表示从第\(i\)个节点往后背包体积为 ...

  6. 【bzoj2427】【软件安装】tarjan缩点+树形依赖背包

    (上不了p站我要死了,侵权度娘背锅) Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上, ...

  7. 【LuoguP1273有线电视网】树形依赖背包

    参考论文http://wenku.baidu.com/view/8ab3daef5ef7ba0d4a733b25.html 参考一篇写的很好的博文http://www.cnblogs.com/GXZC ...

  8. BZOJ 4182 Shopping (点分治+树上多重背包)

    题目大意:给你一颗树,你有$m$元钱,每个节点都有一种物品,价值为$w$,代价为$c$,有$d$个,如果在$u$和$v$两个城市都购买了至少一个物品,那么$u,v$路径上每个节点也都必须买至少一个物品 ...

  9. AcWing 286. 选课 (树形依赖分组背包)打卡

    有依赖的背包 首先依赖的概念,就是一个东西依附与一个东西之上,我们想买附品的话必须要把主品先买下来,这个可以先做下这道题 https://www.cnblogs.com/Lis-/p/11047466 ...

  10. 【HDU 4276】The Ghost Blows Light(树形DP,依赖背包)

    The Ghost Blows Light Problem Description My name is Hu Bayi, robing an ancient tomb in Tibet. The t ...

随机推荐

  1. Docker实践之06-访问仓库

    目录 什么是仓库 一.Docker Hub 注册 登录 拉取镜像 推送镜像 自动创建 二.私有仓库 Docker Registry 安装Docker Registry 在私有仓库上传/搜索/下载镜像 ...

  2. 遭遇DDOS攻击忍气吞声?立刻报警!首都网警重拳出击,犯罪分子无所遁形

    公元2024年2月24日18时许,笔者的个人网站突然遭遇不明身份者的DDOS攻击,且攻击流量已超过阿里云DDos基础防护的黑洞阈值,服务器的所有公网访问已被屏蔽,由于之前早已通过Nginx屏蔽了所有国 ...

  3. 【算法day6】哈希表、有序表、链表(反转单链表)

    哈希表的简单介绍 1)哈希表在使用层面上可以理解为一种集合结构 2)如果只有key,没有伴随数据value,可以使用HashSet结构(C++中叫UnOrderedSet) 3)如果既有key,又有伴 ...

  4. [Node] nvm 安装 node 和 npm

    Node JS 安装 安装 node version manager (nvm) Windows: https://github.com/coreybutler/nvm-windows/release ...

  5. 【Azure App Service for Linux】Linux Web App如何安装系统未安装的包

    问题描述 Linux Web App中如何安装系统默认未安装的包,如何来执行如 apt install XXX命令呢?现在遇见的问题时,通过Azure App Service门户中的SSH登录后,执行 ...

  6. 一文了解 NebulaGraph 上的 Spark 项目

    本文首发于 Nebula Graph Community 公众号 最近我试着搭建了方便大家一键试玩的 Nebula Graph 中的 Spark 相关的项目,今天就把它们整理成文分享给大家.而且,我趟 ...

  7. 调试 Docker 容器内部进程

    首发于官方博客:https://nebula-graph.com.cn/posts/debug-nebula-graph-processes-docker/ 摘要:本文以 Nebula Graph 进 ...

  8. 快速复习JDBC(超详细)

    第一章  JDBC概述 之前我们学习了JavaSE,编写了Java程序,数据保存在变量.数组.集合等中,无法持久化,后来学习了IO流可以将数据写入文件,但不方便管理数据以及维护数据的关系: 后来我们学 ...

  9. 全面解析 Redis 持久化:RDB、AOF与混合持久化

    前言: 每次你在游戏中看到玩家排行榜,或者在音乐应用中浏览热门歌单,有没有想过这个排行榜是如何做到实时更新的?当然,依靠 Redis 即可做到. 在技术领域,我们经常听到「键值存储」 这个词.但在 R ...

  10. 使用 Docker 部署 Answer 问答平台

    1)介绍 GitHub:https://github.com/apache/incubator-answer Answer 问答社区是在线平台,让用户提出问题并获得回答.用户可以发布问题并得到其他用户 ...