论文解读(LightGCL)《LightGCL: Simple Yet Effective Graph Contrastive Learning for Recommendation》
Note:[ wechat:Y466551 | 可加勿骚扰,付费咨询 ]
论文信息
论文标题:LightGCL: Simple Yet Effective Graph Contrastive Learning for Recommendation
论文作者:Cai, Xuheng and Huang, Chao and Xia, Lianghao and Ren, Xubin
论文来源:2023 ICLR
论文地址:download
论文代码:download
视屏讲解:click
1 介绍
出发点:现有图对比推荐方法主要么对用户-项目交互图执行随机增强(例如,节点/边缘扰动),要么依赖于基于启发式的增强技术(例如,用户聚类)来生成对比视图。本文认为这些方法不能很好的保存图内部的语义结构,而且容易收到噪声的干扰;
贡献:
- 在本文中,我们通过设计一个轻量级和鲁棒的图对比学习框架来增强推荐系统,以解决与该任务相关的关键挑战;
- 我们提出了一种有效的对比学习范式用于图的增强。通过全球协作关系的注入,我们的模型可以缓解不准确的对比信号所带来的问题;
- 与现有的基于gcl的方法相比,我们的方法提高了训练效率;
- 在几个真实数据集上进行的大量实验证明了我们的LightGCL的性能优势。深入的分析证明了LightGCL的合理性和稳健性;
2 方法
2.1 模型框架
2.2 局部图依赖关系建模
使用一个 两层的 GCN 捕获用户-物品之间的局部关系:
$\boldsymbol{z}_{i, l}^{(u)}=\sigma\left(p\left(\tilde{\mathcal{A}}_{i,:}\right) \cdot \boldsymbol{E}_{l-1}^{(v)}\right), \quad \boldsymbol{z}_{j, l}^{(v)}=\sigma\left(p\left(\tilde{\mathcal{A}}_{:, j}\right) \cdot \boldsymbol{E}_{l-1}^{(u)}\right)$
最终的用户和物品嵌入表示如下(每层嵌入的加和):
$\boldsymbol{e}_{i}^{(u)}=\sum_{l=0}^{L} \boldsymbol{z}_{i, l}^{(u)}, \quad \boldsymbol{e}_{j}^{(v)}=\sum_{l=0}^{L} \boldsymbol{z}_{j, l}^{(v)}, \quad \hat{y}_{i, j}=\boldsymbol{e}_{i}^{(u) \top} \boldsymbol{e}_{j}^{(v)}$
2.3 高效的全局协作关系学习
为使图对比学习与全局结构学习一起进行推荐,引入 SVD 以便从全局的角度有效地提取重要的协作信号。
首先对归一化邻接矩阵进行 SVD 分解:
$\tilde{\mathcal{A}}=\boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{\top} $
注意:$\boldsymbol{U}$ 和 $\boldsymbol{V}$ 分别是 $I \times I $ 和 $J \times J$ 的矩阵,$S$ 是 $I \times J $ 的对角矩阵(主对角线为从大到小的奇异值);
由于最大的奇异值通常与矩阵的主成分相关联。因此,本文截断奇异值列表以保持大的奇异值值,并重构被截断的归一化邻接矩阵:
$\hat{\mathcal{A}}=\boldsymbol{U}_{q} \boldsymbol{S}_{q} \boldsymbol{V}_{q}^{\top} $
注意:$\boldsymbol{U}_{q} \in \mathbb{R}^{I \times q}$、$\boldsymbol{V}_{q} \in \mathbb{R}^{J \times q}$、$\boldsymbol{S}_{q} \in \mathbb{R}^{q \times q} $;
优点:
①:通过识别对用户偏好表示很重要和可靠的 user-item 交互来强调图的主成分;
②:生成的新图结构通过考虑每个 user-item 对来保持全局协作信号;
$\boldsymbol{g}_{i, l}^{(u)}=\sigma\left(\hat{\mathcal{A}}_{i,:} \cdot \boldsymbol{E}_{l-1}^{(v)}\right), \quad \boldsymbol{g}_{j, l}^{(v)}=\sigma\left(\hat{\mathcal{A}}_{:, j} \cdot \boldsymbol{E}_{l-1}^{(u)}\right)$
$\hat{\boldsymbol{U}}_{q}, \hat{\boldsymbol{S}}_{q}, \hat{\boldsymbol{V}}_{q}^{\top}=\operatorname{ApproxSVD}(\tilde{\mathcal{A}}, q), \quad \hat{\mathcal{A}}_{S V D}=\hat{\boldsymbol{U}}_{q} \hat{\boldsymbol{S}}_{q} \hat{\boldsymbol{V}}_{q}^{\top}$
$\boldsymbol{G}_{l}^{(u)}=\sigma\left(\hat{\mathcal{A}}_{S V D} \boldsymbol{E}_{l-1}^{(v)}\right)=\sigma\left(\hat{\boldsymbol{U}}_{q} \hat{\boldsymbol{S}}_{q} \hat{\boldsymbol{V}}_{q}^{\top} \boldsymbol{E}_{l-1}^{(v)}\right) ; \quad \boldsymbol{G}_{l}^{(v)}=\sigma\left(\hat{\mathcal{A}}_{S V D}^{\top} \boldsymbol{E}_{l-1}^{(u)}\right)=\sigma\left(\hat{\boldsymbol{V}}_{q} \hat{\boldsymbol{S}}_{q} \hat{\boldsymbol{U}}_{q}^{\top} \boldsymbol{E}_{l-1}^{(u)}\right)$
2.4 简化的局部-全局对比学习
传统方法:采用三视图范式,使用增强图之间的对比策略,而不使用原始图;
本文:认为,增强图之间的对比可能带来错误信息知道,可能是由于破坏了图结构,然而,在本文提出的方法中,增强图视图是通过全局协作关系创建的,这可以增强主视图的表示。
$\mathcal{L}_{s}^{(u)}=\sum_{i=0}^{I} \sum_{l=0}^{L}-\log \frac{\exp \left(s\left(\boldsymbol{z}_{i, l}^{(u)}, \boldsymbol{g}_{i, l}^{(u)} / \tau\right)\right)}{\sum_{i^{\prime}=0}^{I} \exp \left(s\left(\boldsymbol{z}_{i, l}^{(u)}, \boldsymbol{g}_{i^{\prime}, l}^{(u)}\right) / \tau\right)}$
推荐任务损失:
总损失:
$\mathcal{L}=\mathcal{L}_{r}+\lambda_{1} \cdot\left(\mathcal{L}_{s}^{(u)}+\mathcal{L}_{s}^{(v)}\right)+\lambda_{2} \cdot\|\Theta\|_{2}^{2} $
论文解读(LightGCL)《LightGCL: Simple Yet Effective Graph Contrastive Learning for Recommendation》的更多相关文章
- 论文解读(MLGCL)《Multi-Level Graph Contrastive Learning》
论文信息 论文标题:Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learn ...
- 论文解读(SimGRACE)《SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation》
论文信息 论文标题:SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation论文作者: ...
- 论文解读(GRACE)《Deep Graph Contrastive Representation Learning》
Paper Information 论文标题:Deep Graph Contrastive Representation Learning论文作者:Yanqiao Zhu, Yichen Xu, Fe ...
- 论文解读(GCC)《GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training》
论文信息 论文标题:GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training论文作者:Jiezhong Qiu, Qibi ...
- 论文解读(GGD)《Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination》
论文信息 论文标题:Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with ...
- 论文解读(GCA)《Graph Contrastive Learning with Adaptive Augmentation》
论文信息 论文标题:Graph Contrastive Learning with Adaptive Augmentation论文作者:Yanqiao Zhu.Yichen Xu3.Feng Yu4. ...
- 论文解读(GROC)《Towards Robust Graph Contrastive Learning》
论文信息 论文标题:Towards Robust Graph Contrastive Learning论文作者:Nikola Jovanović, Zhao Meng, Lukas Faber, Ro ...
- 论文解读(SelfGNN)《Self-supervised Graph Neural Networks without explicit negative sampling》
论文信息 论文标题:Self-supervised Graph Neural Networks without explicit negative sampling论文作者:Zekarias T. K ...
- 论文解读(GCC)《Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering》
论文信息 论文标题:Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering论文作者:Chaki ...
- 论文解读(AGC)《Attributed Graph Clustering via Adaptive Graph Convolution》
论文信息 论文标题:Attributed Graph Clustering via Adaptive Graph Convolution论文作者:Xiaotong Zhang, Han Liu, Qi ...
随机推荐
- 2020-12-01:java中,什么是安全点和安全区域?
福哥答案2020-12-04: 安全点用户线程暂停,GC 线程要开始工作,但是要确保用户线程暂停的这行字节码指令是不会导致引用关系的变化.所以 JVM 会在字节码指令中,选一些指令,作为"安 ...
- 2021-05-27:定义何为step sum?比如680,680+68+6=754,680的step sum叫754。
2021-05-27:定义何为step sum?比如680,680+68+6=754,680的step sum叫754.给定一个整数num,判断它是不是某个数的step sum? 福大大 答案2021 ...
- Selenium - 元素等待(1) - 强制等待/隐式等待
Selenium - 元素等待 浏览器的等待可以分为三种:强制等待.隐式等待.显式等待. 强制等待 强制等待使用python自带的 time 模块: time.sleep(second):强制等待,无 ...
- PyQt5入门之QLineEdit
QLineEdit:输入单行文本 下面描述了默认的键绑定.行编辑还提供了一个上下文菜单(通常通过单击鼠标右键进行调用),它提供了其中一些编辑选项. 按键 动作 Left Arrow 将光标向左移动一个 ...
- 聊聊Seata分布式解决方案AT模式的实现原理
什么是Seata分布式事务解决方案 Seata是一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务.为用户提供了AT.TCC.SAGA和XA事务模式,为用户打造一站式的分布式解决 ...
- 一文读懂面试官都在问的Fastjson漏洞
Fastjson1.2.24-RCE漏洞 漏洞简介 fastjson是阿里巴巴的开源JSON解析库,它可以解析JSON格式的字符串,支持将Java Bean序列化为JSON字符串,也可以从JSON字符 ...
- 【rabbitMQ】-延迟队列-模拟控制智能家居的操作指令
这个需求为控制智能家居工作,把控制智能家居的操作指令发到队列中,比如:扫地机.洗衣机到指定时间工作 一.什么是延迟队列? 延迟队列存储的对象是对应的延迟消息,所谓"延迟消息" ...
- DevOps| 研发效能和PMO如何合作共赢?
项目经理(PMO)对于大组织.跨团队高效协同有着不可替代的作用.跳出组织架构的束缚,横向推动公司级别的大项目向前推进,跟进进展和拿到结果,PMO的小伙伴有着独特的优势. 我之前写过小团队如何高效协作的 ...
- k8s实战案例之部署Zookeeper集群
1.Zookeeper简介 zookeeper是一个开源的分布式协调服务,由知名互联网公司Yahoo创建,它是Chubby的开源实现:换句话讲,zookeeper是一个典型的分布式数据一致性解决方案, ...
- 手动删除了Linux下syslog--/var/log/messages怎么办?
引言 Linux小白很容易犯得一个错误就是:查看日志的时候,尤其是系统日志,由于日志太多,把系统日志手动删除了.也就是把/var/log/messages文件删除了,而不是删除文件的内容.直接删除文件 ...