416. 分割等和子集

给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

注意:

每个数组中的元素不会超过 100

数组的大小不会超过 200

示例 1:

输入: [1, 5, 11, 5]

输出: true

解释: 数组可以分割成 [1, 5, 5] 和 [11].

示例 2:

输入: [1, 2, 3, 5]

输出: false

解释: 数组不能分割成两个元素和相等的子集.

solution 1 二维数组

class Solution {
public boolean canPartition(int[] nums) {
int sum = 0;
for(int i = 0; i < nums.length; i++){
sum += nums[i];
}
//和为奇数,不可能存在
if (sum%2 != 0) return false;
sum /= 2;
//默认为false
boolean[][] dp = new boolean[nums.length+1][sum+1];
//base case
for(int i = 0; i < nums.length+1; i++){
dp[i][0] = true;
}
//状态转移方程
for (int i = 1; i < nums.length+1; i++){
for (int j = 1; j < sum+1; j++){
//剩下空间装不下,不装入
if (j-nums[i-1] < 0){
dp[i][j] = dp[i-1][j];
}else{
//剩下空间可装入的情况下,装入后剩下为0,即为true
dp[i][j] = dp[i-1][j] || dp[i-1][j-nums[i-1]];
}
}
}
return dp[nums.length][sum];
}
}
//分成两个和相等的子集,等于找到和为总数和二分之一的数组,即0-1背包问题

solution2 一维数组

class Solution {
public boolean canPartition(int[] nums) {
int sum = 0;
for(int i = 0; i < nums.length; i++){
sum += nums[i];
}
//和为奇数,不可能存在
if (sum%2 != 0) return false;
sum /= 2;
//默认为false 每一次只依靠nums数组的前一个
boolean[] dp = new boolean[sum+1];
//base case
dp[0] = true; //状态转移方程
for (int i = 0; i < nums.length; i++){
for (int j = sum; j >= 0; j--){
//剩下空间可装入时
if (j-nums[i] >= 0){
dp[j] = dp[j] || dp[j-nums[i]];
}
}
}
return dp[sum];
}
}

518. 零钱兑换 II

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

示例 1:

输入: amount = 5, coins = [1, 2, 5]

输出: 4

解释: 有四种方式可以凑成总金额:

5=5

5=2+2+1

5=2+1+1+1

5=1+1+1+1+1

示例 2:

输入: amount = 3, coins = [2]

输出: 0

解释: 只用面额2的硬币不能凑成总金额3。

示例 3:

输入: amount = 10, coins = [10]

输出: 1

注意:

你可以假设:

0 <= amount (总金额) <= 5000

1 <= coin (硬币面额) <= 5000

硬币种类不超过 500 种

结果符合 32 位符号整数

solution1 二维数组

class Solution {
public int change(int amount, int[] coins) {
int n = coins.length, m = amount;
if (amount == 0) return 1;
if(n == 1) {
if (coins[0] == amount) return 1;
if (coins[0] >= amount) return 0;
} int[][] dp = new int[n+1][m+1];
//base case
for(int i = 0; i < n+1; i++){
dp[i][0] = 1;
}
for (int i = 1; i < n+1; i++){
for (int j = 1; j < m+1; j++){
//当前值等于不放入当前硬币金额达到amount的情况,和当入当前硬币金额达到的情况
if (j - coins[i-1] >= 0){
dp[i][j] = dp[i-1][j] + dp[i][j-coins[i-1]];
}else {
dp[i][j] = dp[i-1][j];
}
}
}
return dp[n][m];
}
}
//1.dp数组
//2.base case
//3.求状态转移方程(数学归纳法 或 根据实际情况推导,如背包问题分为放入和不放入两种情况)

solution 2 空间压缩

class Solution {
public int change(int amount, int[] coins) {
int n = coins.length, m = amount;
if (amount == 0) return 1;
if(n == 1) {
if (coins[0] == amount) return 1;
if (coins[0] >= amount) return 0;
} int[] dp = new int[m+1];
//base case
dp[0] = 1;
for (int i = 0; i < n; i++){
for (int j = 1; j < m+1; j++){
//当前值等于不放入当前硬币金额达到amount的情况,和当入当前硬币金额达到的情况
if (j - coins[i] >= 0){
dp[j] = dp[j] + dp[j-coins[i]];
}else {
dp[j] = dp[j];
}
}
}
return dp[m];
}
}

LeetCode DP篇-背包问题(416、518)的更多相关文章

  1. 【dp】 背包问题

    问题一:01背包 题目: [题目描述] 一个旅行者有一个最多能装 M 公斤的背包,现在有 n件物品,它们的重量分别是W1,W2,...,Wn它们的价值分别为C1,C2,...,Cn求旅行者能获得最大总 ...

  2. dp小结|背包问题

    1.先放上0-1背包模板 二维数组 for(int i=1;i<=n;i++)//枚举 物品 for(int j=1;j<=V;j++)//枚举体积 //这个位置是可以正序枚举的. qwq ...

  3. 动态规划(DP),0-1背包问题

    题目链接:http://poj.org/problem?id=3624 1.p[i][j]表示,背包容量为j,从i,i+1,i+2,...,n的最优解. 2.递推公式 p[i][j]=max(p[i+ ...

  4. Codeforces Round #105 (Div. 2) E. Porcelain —— DP(背包问题)

    题目链接:http://codeforces.com/problemset/problem/148/E E. Porcelain time limit per test 1 second memory ...

  5. 【leetcode dp】629. K Inverse Pairs Array

    https://leetcode.com/problems/k-inverse-pairs-array/description/ [题意] 给定n和k,求正好有k个逆序对的长度为n的序列有多少个,0& ...

  6. 【leetcode dp】132. Palindrome Partitioning II

    https://leetcode.com/problems/palindrome-partitioning-ii/description/ [题意] 给定一个字符串,求最少切割多少下,使得切割后的每个 ...

  7. 【leetcode dp】Dungeon Game

    https://leetcode.com/problems/dungeon-game/description/ [题意] 给定m*n的地牢,王子初始位置在左上角,公主在右下角不动,王子要去救公主,每步 ...

  8. 「10.19」最长不下降子序列(DP)·完全背包问题(spfa优化DP)·最近公共祖先(线段树+DFS序)

    我又被虐了... A. 最长不下降子序列 考场打的错解,成功调了两个半小时还是没A, 事实上和正解的思路很近了,只是没有想到直接将前$D$个及后$D$个直接提出来 确实当时思路有些紊乱,打的时候只是将 ...

  9. [LeetCode] Dp

    Best Time to Buy and Sell Stock 题目: Say you have an array for which the ith element is the price of ...

  10. [Leetcode] DP -- Target Sum

    You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...

随机推荐

  1. Jellyfin Documentation

    Skip to main content     Introduction On this page Welcome to the Jellyfin Documentation Jellyfin is ...

  2. 使用 Helm 管理应用的一些 Tips

    背景 Helm 是一个 Kubernetes 的包管理工具,有点类似于 Mac 上的 brew,Python 中的 PIP:可以很方便的帮我们直接在 kubernetes 中安装某个应用. 比如我们可 ...

  3. gitlab ci 用 cypress/playwright 做测试并展示结果至 mr

    前言 看了一下官方的教程好像都没有讲怎么将测试结果展示出来,只是给出测试的 ci 脚本,但根据 gitlab 官方的文档是有测试报告的展示的,所以这里给出一个基于 junit 测试报告的展示. 前期准 ...

  4. 数字时代的自我呈现:探索个人形象打造的创新工具——FaceChain深度学习模型工具

    数字时代的自我呈现:探索个人形象打造的创新工具--FaceChain深度学习模型工具 1.介绍 FaceChain是一个可以用来打造个人数字形象的深度学习模型工具.用户仅需要提供最低一张照片即可获得独 ...

  5. Pushpin:开源即时通信神器,让你的API秒变实时API,轻松实现WebSocket,HTTP流和HTTP长轮询等服务

    作为一个开发者,你可能已经利用过REST API来构建和集成各种应用.REST API是基于HTTP协议的交互模式,它使得客户端和服务器可以通过请求和响应来进行数据交换,简单.灵活.通用. 然而,当你 ...

  6. 如何使用markdown

    关于如何使用markdown写博客 markdown的语法 代码的插入 电脑Table建上面上面的键输入三个点``` 然后输入语言+回车 c语言中第一个程序 #include<stdio.h&g ...

  7. ResNet详解:网络结构解读与PyTorch实现教程

    本文深入探讨了深度残差网络(ResNet)的核心概念和架构组成.我们从深度学习和梯度消失问题入手,逐一解析了残差块.初始卷积层.残差块组.全局平均池化和全连接层的作用和优点.文章还包含使用PyTorc ...

  8. 二。docker安装mysql 并配置

    1.docker安装mysql 1.1使用docker拉取mysql的镜像 docker pull mysql:5.7 1.2通过镜像启动 docker run -p 3306:3306 --name ...

  9. 使用 Docker Compose 部署 RabbitMQ 的一些经验与踩坑记录

    前言 RabbitMQ 是一个功能强大的开源消息队列系统,它实现了高效的消息通信和异步处理. 本文主要介绍其基于 Docker-Compose 的部署安装和一些使用的经验. 特点 成熟,稳定 消息持久 ...

  10. HTML DOM之二:事件

    对事件作出反应 当事件发生时,可以执行 JavaScript,比如当用户点击一个 HTML 元素时. 如需在用户点击某个元素时执行代码,请把 JavaScript 代码添加到 HTML 事件属性中: ...