LOJ #6043. 「雅礼集训 2017 Day7」蛐蛐国的修墙方案
我可以大喊一声这就是个SB题吗?
首先讲一句如果你像神仙CXR一样精通搜索你就可以得到\(80pts\)(无Subtask)的好成绩
我们考虑挖掘一下题目的性质,首先发现这是一个置换,那么我们发现这的显然会成环
然后我们发现那个度数的性质其实就是告诉你环上的点必须左右括号相间
换而言之一个环其实只有两种状态,那么我们对于每一个环进行搜索的复杂度显然就是\(O(2^{\frac{n}{2}}n)\)
那么考虑\(n=100\)要怎么卡过去。我们发现一个长度为\(2\)的环显然必须令前面的为左括号,后面为右括号
然后细细分析一下复杂度,这样只用长度\(\ge4\)的环需要搜索状态,那么复杂度就是\(2^{\frac{n}{4}} n\),足以通过此题
CODE
#include<cstdio>
#include<vector>
#include<cstdlib>
#define RI register int
#define CI const int&
using namespace std;
const int N=105;
int n,x,cur,p[N],col[N],sz[N]; vector <int> v[N]; bool c[N];
inline void check(int pfx=0)
{
RI i; for (i=1;i<=n;++i)
{
pfx+=c[i]?-1:1; if (pfx<0) return;
}
for (i=1;i<=n;++i) putchar(c[i]?')':'('); exit(0);
}
inline void DFS(CI nw)
{
if (nw>cur) return check(); if (sz[nw]==2)
return (void)(c[v[nw][0]]=0,c[v[nw][1]]=1,DFS(nw+1));
RI i; for (i=0;i<sz[nw];++i) c[v[nw][i]]=i&1; DFS(nw+1);
for (i=0;i<sz[nw];++i) c[v[nw][i]]=(i&1)^1; DFS(nw+1);
}
int main()
{
//freopen("C.in","r",stdin); freopen("C.out","w",stdout);
RI i; for (scanf("%d",&n),i=1;i<=n;++i) scanf("%d",&p[i]);
for (i=1;i<=n;++i) if (!col[i])
{
for (x=i,++cur;!col[x];x=p[x])
col[x]=cur,v[cur].push_back(x),++sz[cur];
}
return DFS(1),0;
}
LOJ #6043. 「雅礼集训 2017 Day7」蛐蛐国的修墙方案的更多相关文章
- loj 6043「雅礼集训 2017 Day7」蛐蛐国的修墙方案
loj 爆搜? 爆搜! 先分析一下,因为我们给出的是一个排列,然后让\(i\)给\(p_i\)连边,那么我们一定会得到若干个环,最后要使得所有点度数为1,也就是这些环有完备匹配,那么最后一定全是偶环. ...
- 【复杂度分析】loj#6043. 「雅礼集训 2017 Day7」蛐蛐国的修墙方案
感觉有点假 题目大意 数据范围:$n<=100$ 题目分析 由于题目给出的是 置换,所以相当于只需枚举每个环的两个状态. 主要是复杂度分析这里: 一元环:不存在 二元环:特判保平安 三元环:不存 ...
- loj6043 「雅礼集训 2017 Day7」蛐蛐国的修墙方案
传送门:https://loj.ac/problem/6043 [题解] 我们考虑这是个置换,所以一定形成了很多不相交的环. 对于每个环,我们只能选一段.不选.选一段.不选这样交替下去. 显然只有偶环 ...
- 【LOJ6043】「雅礼集训 2017 Day7」蛐蛐国的修墙方案(搜索技巧题)
点此看题面 大致题意: 给你一个长度为\(n\)的排列\(p\),要求构造一个合法的括号序列,使得如果第\(i\)个位置是左括号,则第\(p_i\)个位置一定是右括号. 暴搜 很容易想出一个暴搜. 即 ...
- 【刷题】LOJ 6041 「雅礼集训 2017 Day7」事情的相似度
题目描述 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的有相同的事情发 ...
- LOJ #6041. 「雅礼集训 2017 Day7」事情的相似度
我可以大喊一声这就是个套路题吗? 首先看到LCP问题,那么套路的想到SAM(SA的做法也有) LCP的长度是它们在parent树上的LCA(众所周知),所以我们考虑同时统计多个点之间的LCA对 树上问 ...
- loj#6041. 「雅礼集训 2017 Day7」事情的相似度(SAM set启发式合并 二维数点)
题意 题目链接 Sol 只会后缀数组+暴躁莫队套set\(n \sqrt{n} \log n\)但绝对跑不过去. 正解是SAM + set启发式合并 + 二维数点/ SAM + LCT 但是我只会第一 ...
- LOJ #6042. 「雅礼集训 2017 Day7」跳蚤王国的宰相
我可以大喊一声这就是个思博题吗? 首先如果你能快速把握题目的意思后,就会发现题目就是让你求出每个点要成为树的重心至少要嫁接多少边 先说一个显然的结论,重心的答案为\(0\)(废话) 然后我们考虑贪心处 ...
- loj#6041. 「雅礼集训 2017 Day7」事情的相似度(后缀自动机+启发式合并)
题面 传送门 题解 为什么成天有人想搞些大新闻 这里写的是\(yyb\)巨巨说的启发式合并的做法(虽然\(LCT\)的做法不知道比它快到哪里去了--) 建出\(SAM\),那么两个前缀的最长公共后缀就 ...
随机推荐
- eShopOnContainers 知多少[4]:Catalog microservice
引言 Catalog microservice(目录微服务)维护着所有产品信息,包括库存.价格.所以该微服务的核心业务为: 产品信息的维护 库存的更新 价格的维护 架构模式 如上图所示,本微服务采用简 ...
- Spring Boot 集成 Swagger,生成接口文档就这么简单!
之前的文章介绍了<推荐一款接口 API 设计神器!>,今天栈长给大家介绍下如何与优秀的 Spring Boot 框架进行集成,简直不能太简单. 你所需具备的基础 告诉你,Spring Bo ...
- redis的hash类型!!!!
Hash类型 redsi的hash是基本类型之一,键值本身又是一对键值结构,是string类型的field和value的映射表,或者说是集合,适合存储对象. Hash的增操作 127.0.0.1:63 ...
- 小白都会超详细--ELK日志管理平台搭建教程
目录 一.介绍 二.安装JDK 三.安装Elasticsearch 四.安装Logstash 五.安装Kibana 六.Kibana简单使用 系统环境:CentOS Linux release 7.4 ...
- Windows系统pip安装whl包
1.确保PIP的存在 2.CMD命令进入C:\Python34\Scripts里面后再执行PIP命令安装pip install wheel # D: 和cd 地址 3.把文件最好放在\S ...
- RAID磁盘阵列及CentOS7系统启动流程(week2_day3)--技术流ken
RAID概念 磁盘阵列(Redundant Arrays of Independent Disks,RAID),有“独立磁盘构成的具有冗余能力的阵列”之意. 磁盘阵列是由很多价格较便宜的磁盘,以硬件( ...
- docker 安装 MySQL 8,并减少内存占用 记录
目前vps 1cpu 512m内存 MySQL内存占用77% ,约350m ,经过修改配置文件优化后如下 $ ps aux 进入docker bash $ docker exec -it pwc-my ...
- 根据点击事件去选取电脑中.rvt文件
private void button_Click(object sender, RoutedEventArgs e) { //这个选出来是文件夹 //选择文件 var openFileDialog ...
- 简述Servlet的基本概念
Servlet的基本概念 Servlet的概念 http协议作用于客户端-服务端.由客户端发送请求(Request),服务器端接收到数据之后,向客户端发送响应(Response),这就是请求-响应模式 ...
- 使用Python画玫瑰花
''' Created on Nov 18, 2017 @author: QiZhao ''' import turtle # 设置初始位置 turtle.penup() turtle.left(90 ...