BZOJ_1076_[SCOI2008]奖励关_状压DP

题意:

你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?

分析:

状压DP。

因为“现在决定不吃的宝物以后也不能再吃”,所以我们有很多不能到达的状态。

如果倒着做我们可以避免矛盾的情况,因为倒着做是由一个确定可到达的状态推向之前的一个状态,那么转移一定合法。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define du double
du f[110][1<<16];
int K,n,s[20],p[20];
int main(){
scanf("%d%d",&K,&n);
int x,mask=(1<<n)-1;
for(int i=1;i<=n;i++){
scanf("%d",&p[i]);
while(scanf("%d",&x)){
if(!x)break;
s[i]|=(1<<x-1);
}
}
for(int i=K;i>=1;i--){
for(int j=0;j<=mask;j++){
for(int k=1;k<=n;k++){
if((s[k]|j)==j)
f[i][j]+=max(f[i+1][j|(1<<k-1)]+p[k],f[i+1][j]);
else f[i][j]+=f[i+1][j];
}
f[i][j]/=n;
}
}
printf("%.6lf",f[1][0]); }
/*
6 6
12 2 3 4 5 0
15 5 0
-2 2 4 5 0
-11 2 5 0
5 0
1 2 4 5 0
*/

BZOJ_1076_[SCOI2008]奖励关_状压DP的更多相关文章

  1. BZOJ1076 [SCOI2008]奖励关 【状压dp + 数学期望】

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 3074  Solved: 1599 [Submit][Sta ...

  2. 【BZOJ1076】[SCOI2008] 奖励关(状压DP)

    点此看题面 大致题意:总共有\(n\)个宝物和\(k\)个回合,每个回合系统将随机抛出一个宝物(抛出每个宝物的概率皆为\(1/n\)),吃掉一个宝物可以获得一定的积分(积分可能为负),而吃掉某个宝物有 ...

  3. BZOJ1076: [SCOI2008]奖励关【状压DP+期望DP】

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...

  4. 【BZOJ】1076: [SCOI2008]奖励关(状压dp+数学期望)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1076 有时候人蠢还真是蠢.一开始我看不懂期望啊..白书上其实讲得很详细的,什么全概率,全期望(这个压 ...

  5. bzoj 1076: [SCOI2008]奖励关【状压dp+概率dp】

    设f[i][s]为前i步,选的礼物集合为s的方案数,然而并不会转移-- 看了hzwer的blog,发现要倒着转移,然后答案就是f[1][0] 妙啊 #include<iostream> # ...

  6. [SCOI2008]奖励关_状压动归_数学期望

    Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 20; dou ...

  7. BZOJ_2064_分裂_状压DP

    BZOJ_2064_分裂_状压DP Description 背景: 和久必分,分久必和... 题目描述: 中国历史上上分分和和次数非常多..通读中国历史的WJMZBMR表示毫无压力. 同时经常搞OI的 ...

  8. BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS

    BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS Description Farmer John has taken the cows to a va ...

  9. BZOJ_5369_[Pkusc2018]最大前缀和_状压DP

    BZOJ_5369_[Pkusc2018]最大前缀和_状压DP Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于 ...

随机推荐

  1. search for a range(找出一个数在数组中开始和结束位置)

    Given an array of integers sorted in ascending order, find the starting and ending position of a giv ...

  2. Testng基本问题

    Testng testng.xml suite属性说明: suite verbose="4" 命令行信息打印等级 1~5 parallel 是否多线程并发运行测试:可选值(fals ...

  3. Day6_内置函数

    定义完一个有名函数,可以直接利用函数名+括号来执行,例如:func() 有名函数: def func(x,y,z=1): return x+y+z 匿名函数: lambda x,y,z=1:x+y+z ...

  4. lodash中Collection部分所有方法的总结

    总结一下lodash中Collection的所有的方法,方便对比记忆,也便于使用时候查找. 1.    判断是否符合条件:返回bool: a)  every: 判断每一值是不是都符合条件: 通过 pr ...

  5. prometheus alert rules文件格式化

    1.下载go(version>1.9,否则promtool工具不好使) https://golang.org/doc/install?download=go1.10.2.linux-amd64. ...

  6. mysql安装与配置(以mysql-5.7.10-winx64为例)

    一.在官网上下载相应的mysql安装包,本人下载的是:mysql-5.7.10-winx64 (Windows (x86, 64-bit), ZIP Archive) 附下载地址:http://dev ...

  7. (汇总)os模块以及shutil模块对文件的操作

    ''' # os 模块 os.sep 可以取代操作系统特定的路径分隔符.windows下为 '\\' os.name 字符串指示你正在使用的平台.比如对于Windows,它是'nt',而对于Linux ...

  8. 读《图解HTTP》有感-(简单的HTTP协议)

    写在前面 该章节主要是针对HTTP1.1版本进行基础的讲解 正文 HTTP协议能做什么: http协议用于客户端和服务端之间的通信 HTTP协议通信方式: http协议是基于请求响应的方式来实现消息通 ...

  9. 利用AOP实现SqlSugar自动事务

    先看一下效果,带接口层的三层架构: BL层: public class StudentBL : IStudentService { private ILogger mLogger; private r ...

  10. xinetd被动服务唤醒

    rsync设置: 1.打开rsync控制开关(修改文件 /etc/default/rsync)2.sudo cp /usr/share/doc/rsync/examples/rsyncd.conf / ...