2005: [Noi2010]能量采集

Time Limit: 10 Sec  Memory Limit: 552 MB
[Submit][Status][Discuss]

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,
栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列
有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,
表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了
一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器
连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于
连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植
物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20
棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能
量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】
5 4
【样例输入2】
3 4

Sample Output

【样例输出1】
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。
 
        n  m
题意:求2*∑      ∑ gcd(i,j)-1;
       i=1  j=1
思路:首先一个很涨知识的筛法;
   g[k]表示gcd(i,j)==k的个数;
   g[k]=n/k*m/k-g[2*k]-g[3*k]-.......;
   逆序写即可,复杂度O(n*log(n));
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
const int N=1e5+,M=4e6+,inf=1e9+;
ll g[N];
int main()
{
int x,y,z,i,t;
while(~scanf("%d%d",&x,&y))
{
ll ans=;
for(i=min(x,y);i>=;i--)
{
g[i]=(ll)x/i*(y/i);
for(t=i+i;t<N;t+=i)
g[i]-=g[t];
ans+=g[i]*(*i-);
}
printf("%lld\n",ans);
} return ;
}

欧拉函数:

       n     m     n     m                       min(n,m)

证明过程:   ∑      ∑ gcd(i,j)=∑      ∑     ∑ Ø(d)     =  ∑  Ø(d) * (n/d) *(m/d)

      i=1   j=1           i=1   j=1  d|gcd(i,j)     d=1

      分块写,复杂度 预处理O(1e5)+sqrt(min(n,m));

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
const int N=1e5+,M=1e6+,inf=1e9+;
const ll INF=1e18+;
ll p[N],ji;
bool vis[N];
ll phi[N];
ll sum[N];
void get_eular(int n)
{
ji = ;
phi[]=;
memset(vis, true, sizeof(vis));
for(int i = ; i <= n; i++)
{
if(vis[i])
{
p[ji ++] = i;
phi[i] = i - ;
}
for(int j = ; j < ji && i * p[j] <= n; j++)
{
vis[i * p[j]] = false;
if(i % p[j] == )
{
phi[i * p[j]] = phi[i] * p[j];
break;
}
else
phi[i * p[j]] = phi[i] * phi[p[j]];
}
}
}
int main()
{
get_eular(N);
memset(sum,,sizeof(sum));
for(int i=;i<=1e5;i++)
sum[i]=sum[i-]+phi[i];
ll x,y;
while(~scanf("%lld%lld",&x,&y))
{
if(x>y)swap(x,y);
ll ans=;
for(int L=,R=;L<=x;L=R+)
{
R=min(x/(x/L),y/(y/L));
ans+=(sum[R]-sum[L-])*(x/L)*(y/L);
}
printf("%lld\n",*ans-x*y);
}
return ;
}

莫比乌斯:模版题;

     gcd(i,j)==k,枚举k;

     复杂度O(min(n,m)sqrt(n));

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define esp 0.00000000001
#define pi 4*atan(1)
const int N=1e5+,M=1e7+,inf=1e9+,mod=1e9+;
ll mu[N], p[N], np[N], cnt, sum[N];
void init() {
mu[]=;
for(int i=; i<N; ++i) {
if(!np[i]) p[++cnt]=i, mu[i]=-;
for(int j=; j<=cnt && i*p[j]<N; ++j) {
int t=i*p[j];
np[t]=;
if(i%p[j]==) { mu[t]=; break; }
mu[t]=-mu[i];
}
}
for(int i=;i<N;i++)
sum[i]=sum[i-]+mu[i];
}
ll getans(int b,int d)
{
ll ans=;
for(int L=,R=;L<=b;L=R+)
{
R=min(b/(b/L),d/(d/L));
ans+=(ll)(sum[R]-sum[L-])*(b/L)*(d/L);
}
return ans;
}
int main()
{
init();
int b,d,k;
while(~scanf("%d%d",&b,&d))
{
if(b>d)swap(b,d);
ll ans=;
for(int i=;i<=b;i++)
ans+=getans(b/i,d/i)*i;
printf("%lld\n",*ans-(ll)b*d);
}
return ;
}

    

bzoj 2005: [Noi2010]能量采集 筛法||欧拉||莫比乌斯的更多相关文章

  1. 【BZOJ】2005: [Noi2010]能量采集(欧拉函数+分块)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2005 首先和某题一样应该一样可以看出每个点所在的线上有gcd(x,y)-1个点挡着了自己... 那么 ...

  2. BZOJ 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 3312  Solved: 1971[Submit][Statu ...

  3. BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )

    一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...

  4. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  5. BZOJ2005: [Noi2010]能量采集(欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

  6. 【刷题】BZOJ 2005 [Noi2010]能量采集

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  7. BZOJ 2005: [Noi2010]能量采集(莫比乌斯反演)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2005 题意:   思路: 首先要知道一点是,某个坐标(x,y)与(0,0)之间的整数点的个数为gcd ...

  8. BZOJ 2005: [Noi2010]能量采集 [莫比乌斯反演]

    题意:\((0,0)\)到\((x,y),\ x \le n, y \le m\)连线上的整点数\(*2-1\)的和 \((0,0)\)到\((a,b)\)的整点数就是\(gcd(a,b)\) 因为. ...

  9. BZOJ 2005 [Noi2010]能量采集 ——Dirichlet积

    [题目分析] 卷积一卷. 然后分块去一段一段的求. O(n)即可. [代码] #include <cstdio> #include <cstring> #include < ...

随机推荐

  1. PyQt5 GUI Programming With Python 3.6 (一)

    PyQt5 PyQt5是一个基于强大的图形程式框架Qt5的python接口, 主要包含以下几个大类: ● QtCore ● QtGui ● QtWidgets ● QtMultimedia ● QtB ...

  2. 【COCOS2DX-LUA 脚本开发之四】

    使用tolua++编译pkg,从而创建自定义类让Lua脚本使用 本站文章均为李华明Himi原创,转载务必在明显处注明:(作者新浪微博:@李华明Himi ) 转载自[黑米GameDev街区] 原文链接: ...

  3. 【Cocos2dX(2.x)_Lua开发之三】

    [Cocos2dX(2.x)_Lua开发之三]在Lua中使用自定义精灵(Lua脚本与自创建类之间的访问)及Lua基础讲解 本站文章均为李华明Himi原创,转载务必在明显处注明:(作者新浪微博:@李华明 ...

  4. [ERROR] Error generating R.java from manifest

    把*.js文件用记事本打开,再保存为utf-8的编码覆盖,把build文件夹的文件删掉,启动.可以运行了.(在这之前试过把jdk的几个文件考到平台工具下的动作)

  5. AccessibilityService 官网介绍

    AccessibilityService extends Service java.lang.Object    ↳ android.content.Context      ↳ android.co ...

  6. struts2 拦截器,使用spring注入

    ActionContext actionContext = invocation.getInvocationContext();ServletContext context = (ServletCon ...

  7. traceroute 命令

    通过traceroute我们可以知道信息从你的计算机到互联网另一端的主机是走的什么路径.当然每次数据包由某一同样的出发点(source)到达某一同样的目的地(destination)走的路径可能会不一 ...

  8. Cannot lock storage /tmp/hadoop-root/dfs/name. The directory is already locked.

    [root@nn01 bin]# ./hadoop namenode -format 12/05/21 06:13:51 INFO namenode.NameNode: STARTUP_MSG: /* ...

  9. 机器学习13—PCA学习笔记

     主成分分析PCA 机器学习实战之PCA test13.py #-*- coding:utf-8 import sys sys.path.append("pca.py") impo ...

  10. CSDN--字体颜色--markdown

    在写blog时,想高亮某些字,但是发现markdown更改字体颜色不像word里那么方便,于是查了一下,要用一下代码进行更改字体颜色,还可以更改字体大小,还有字体格式 <font 更改语法> ...