Mr. Pote's shop sells beans now. He has N bags of beans in his warehouse, and he has numbered them with 1, 2, …, N according to their expired dates. The i-th bag contains Wi units of beans. For selling at retail makes only a little profit, Mr. Pote want to pack beans in small packets with certain size and sell them in packets. Here comes his packing way:
      Suppose the size of the packet is P units. Firstly, Mr. Pote selects some bags (at least one) of beans with consecutive number in his warehouse. Then he takes out the beans from all selected bags, and puts them together on the desktop. To pack the beans, he take P units of beans from desktop and fill in a new packet each time, until the beans left are less than P units. Finally the beans left on the desktop are eaten by a lucky dog.

      Mr. Pote doesn't want the dog eat too many beans, so he prefers to solutions that resulting no more than K units of beans eaten by the dog. Moreover, he also wants to pack as many packets as possible. Could you tell him how many packets he can pack at most without breaking his preference?

Input      On the first line of input, there is a single positive integer T <= 20 specifying the number of test cases to follow.

      Each test case contains two lines.

      There are three integers in the first line, N, P, K as described above. (0 < N, P < 1000001, 0 <= K < P)

      Next follow a line with N integers W1, W2, ..., WN. The i-th integers describes the amount of beans in the bags numbered i. (0 <= Wi < 32768)

      Numbers are separated by spaces.

Output      For each test case you should output a single line containing "Case X: Y" (quotes for clarity) where X is the number of the test case (starting at 1) and Y is the maximum number of packets that Mr. Pote can pack following his way.

      In case there's no solution avoiding the dog eats more than K units of beans, Y should be equal to -1.

Sample Input

3
10 20 10
0 3 1 8 19 39 2 9 1 8
3 100 10
32 34 23
1 5 3
1

Sample Output

Case 1: 4
Case 2: -1
Case 3: 0

题意:

先t组输入,之后输入n、p、k

n:有n袋豆子

p:重新装袋后每袋中豆子的数量

k:狗粮不能超过多少豆子

后边在输入n袋豆子中,每一袋里面豆子的数量

让你从n袋豆子中挑选出来连续的袋子,再将所有豆子重装进p数量的袋子,问最多能装多少袋(在狗粮不超过k的情况下)

题解:

详解原文:传送门

首先我们要求选出来连续的袋子,那么肯定要预处理一下前缀和(这里记为sum[i],rem[i]=sum[i]%p)

我们就是再求(sum[i]-sum[j])/p  (i>j)的最大值,要保证(sum[i]-sum[j])%p<=k

当sum[i]>=sum[j]时:

可化简至:sum[i]%p-sum[j]%p<=k  ===>>>   rem[i]-rem[j]<=k

只需要在满足此条件下,找到最大的sum[i]-sum[j]就可以了,而且这一点还可以用单调递增队列来维护,每次取队头来和sum[i]做计算就可以了

当sum[i]<sum[j]时

有sum[i]%p-sum[j]%p+p<=k   =====>>>>     rem[i]-rem[j]+p<=k    =====>>>>       rem[i]<=k+(rem[j]-p)

因为rem<p 所以   rem[i]<k

而且(sum[i]-sum[j])<sum[i]

所以我们可以处理一下前缀和sum[i],来取最大的sum[i]/p

代码:

 1 #include<stdio.h>
2 #include<string.h>
3 #include<iostream>
4 #include<algorithm>
5 using namespace std;
6 const int maxn=1e5+10;
7 struct shudui
8 {
9 int sum,id,rem;
10 }m[maxn];
11 bool mmp(shudui x,shudui y)
12 {
13 if(x.rem==y.rem)
14 return x.id<y.id;
15 else return x.rem<y.rem;
16 }
17 int que[maxn];
18 int main()
19 {
20 int t,tt=0;
21 scanf("%d",&t);
22 while(t--)
23 {
24 int n,p,k;
25 scanf("%d%d%d",&n,&p,&k);
26 m[0].sum=0;
27 for(int i=1;i<=n;++i)
28 {
29 int q;
30 scanf("%d",&q);
31 m[i].sum=m[i-1].sum+q;
32 m[i].rem=m[i].sum%p;
33 m[i].id=i;
34 }
35 sort(m+1,m+1+n,mmp);
36 int s=1,e=0,ans=0,flag=0;
37 for(int i=1;i<=n;++i)
38 {
39 while(e>=s && m[que[e]].id>m[i].id)
40 e--;
41 while(e>=s && m[i].rem-m[que[s]].rem>k)
42 s++;
43 que[++e]=i;
44 if(m[i].rem<=k)
45 ans=max(ans,m[i].sum/p),flag=1;
46 if(e>s && m[i].rem-m[que[s]].rem<=k)
47 ans=max(ans,(m[i].sum-m[que[s]].sum)/p),flag=1;
48 }
49 if(flag)
50 printf("Case %d: %d\n",++tt,ans);
51 else printf("Case %d: -1\n",++tt);
52 }
53 return 0;
54 }

hdu2430Beans(单调队列)的更多相关文章

  1. BestCoder Round #89 B题---Fxx and game(单调队列)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5945     问题描述 输入描述 输出描述 输入样例 输出样例 题意:中文题,不再赘述: 思路:  B ...

  2. 单调队列 && 斜率优化dp 专题

    首先得讲一下单调队列,顾名思义,单调队列就是队列中的每个元素具有单调性,如果是单调递增队列,那么每个元素都是单调递增的,反正,亦然. 那么如何对单调队列进行操作呢? 是这样的:对于单调队列而言,队首和 ...

  3. FZU 1914 单调队列

    题目链接:http://acm.fzu.edu.cn/problem.php?pid=1914 题意: 给出一个数列,如果它的前i(1<=i<=n)项和都是正的,那么这个数列是正的,问这个 ...

  4. BZOJ 1047 二维单调队列

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1047 题意:见中文题面 思路:该题是求二维的子矩阵的最大值与最小值的差值尽量小.所以可以考 ...

  5. 【BZOJ3314】 [Usaco2013 Nov]Crowded Cows 单调队列

    第一次写单调队列太垃圾... 左右各扫一遍即可. #include <iostream> #include <cstdio> #include <cstring> ...

  6. BZOJ1047: [HAOI2007]理想的正方形 [单调队列]

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2857  Solved: 1560[Submit][St ...

  7. hdu 3401 单调队列优化DP

    Trade Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status ...

  8. 【转】单调队列优化DP

    转自 : http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列是一种严格单调的队列,可以单调递增,也可以单调递减.队 ...

  9. hdu3530 单调队列

    Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  10. BestCoder Round #89 02单调队列优化dp

    1.BestCoder Round #89 2.总结:4个题,只能做A.B,全都靠hack上分.. 01  HDU 5944   水 1.题意:一个字符串,求有多少组字符y,r,x的下标能组成等比数列 ...

随机推荐

  1. LeetCode430 扁平化多级双向链表

    您将获得一个双向链表,除了下一个和前一个指针之外,它还有一个子指针,可能指向单独的双向链表.这些子列表可能有一个或多个自己的子项,依此类推,生成多级数据结构,如下面的示例所示. 扁平化列表,使所有结点 ...

  2. 在阿里云托管的k8s上使用nas做动态存储

    前言 关于aliyun托管k8s的存储插件主要有两种: CSI # kubectl get pod -n kube-system | grep csi-plugin csi-plugin-8bbnw ...

  3. torch.nn 的本质

    torch.nn 的本质 PyTorch 提供了各种优雅设计的 modules 和类 torch.nn,torch.optim,Dataset 和 DataLoader 来帮助你创建并训练神经网络.为 ...

  4. Can't locate CPAN.pm in @INC

    [root@test]# perl -MCPAN -e 'install DBD::mysql'Can't locate CPAN.pm in @INC (@INC contains: /usr/lo ...

  5. 【Linux】snmp在message中报错: /etc/snmp/snmpd.conf: line 311: Error: ERROR: This output format has been de

    Apr 17 17:36:17 localhost snmpd[2810]: /etc/snmp/snmpd.conf: line 311: Error: ERROR: This output for ...

  6. 【Oracle】删除表空间

    删除表空间如果是 SQL> DROP TABLEPSACE XXXX; 是无法将数据文件一同都删除的 想要删除表空间和数据文件需要如下操作: SQL> drop tablespace XX ...

  7. 【Oracle】win7安装报错

    在WIN7上安装oracle 10g时,提示如下信息: 正在检查操作系统要求... 要求的结果: 5.0,5.1,5.2,6.0 之一 实际结果: 6.1 检查完成.此次检查的总体结果为: 失败 &l ...

  8. oracle动态采样导致数据库出现大量cursor pin s wait on x等待

    生产库中,突然出现了大量的cursor pin s wait on x等待,第一反应是数据库出现了硬解析,查看最近的DDL语句,没有发现DDL.那么有可能这个sql是第一次进入 在OLTP高并发下产生 ...

  9. 响应式编程库RxJava初探

    引子 在读 Hystrix 源码时,发现一些奇特的写法.稍作搜索,知道使用了最新流行的响应式编程库RxJava.那么响应式编程究竟是怎样的呢? 本文对响应式编程及 RxJava 库作一个初步的探索. ...

  10. 解决安装mysql动态库libstdc++.so.6、libc.so.6版本过低问题

    初始化mysql报错: ./bin/mysqld: /usr/lib64/libstdc++.so.6: version `GLIBCXX_3.4.15' not found (required by ...