题解 P2642 【双子序列最大和】
前言
其实这道题的关键就是在于预处理,其方法类似于 合唱队形
正文
求最大子段和
要想求出双子序列最大和,首先我们要会求出最大子段和
最大子段和的求值方法很简单
定义 \(f_i\) 为以第 \(i\) 个数结尾的最大子段和
#include <bits/stdc++.h>
using namespace std;
int f[1000010],a[1000010];
int main(){
int n;
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
f[1]=a[1];
for(int i=2;i<=n;i++)f[i]=max(f[i-1]+a[i],a[i]);
int ans=f[1];
for(int i=2;i<=n;i++)ans=max(ans,f[i]);
cout<<ans;
return 0;
}
求双子序列最大和
那么我们现在可以去求双子序列最大和
怎么求,思路是

如果你去枚举中间的数,然后去算左边的最大子段,再算出右边的最大子段,加起来,用打擂法,求出最大值,你会 \(TLE\),毕竟\(n<=10^{6}\)
那怎么办?我们可以预处理
我们可以用 \(O(n)\) 的时间计算到前 \(1\) 个数的最大子段,
我们可以用 \(O(n)\) 的时间计算到后 \(i\) 个数的最大子段
像这样
cin>>n;
for(int i=1;i<=n;i++)cin>>x[i];
f[1]=x[1];
for(int i=2;i<=n;i++)f[i]=max(f[i-1]+x[i],x[i]);//算最大子段
for(int i=2;i<=n;i++)f[i]=max(f[i-1],f[i]);//更新成最大值
l[n]=x[n];
for(int i=n-1;i>=1;i--)l[i]=max(l[i+1]+x[i],x[i]);//算最大子段
for(int i=n-1;i>=1;i--)l[i]=max(l[i+1],l[i]);//更新成最大值
这里 \(f_i\) 表示前 \(i\) 个数中的最大字段和
这里 \(l_i\) 表示后 \(i\) 个数中的最大字段和
然后,用 \(O(n)\) 的时间去枚举中间的数,打擂法求出双子序列最大和
上代码:
#include<bits/stdc++.h>
using namespace std;
long long x[1000010],f[1000010],l[1000010];
int main(){
int n;
cin>>n;
for(int i=1;i<=n;i++)cin>>x[i];
f[1]=x[1];
for(int i=2;i<=n;i++)f[i]=max(f[i-1]+x[i],x[i]);//算最大子段
for(int i=2;i<=n;i++)f[i]=max(f[i-1],f[i]);//算最大子段
l[n]=x[n];
for(int i=n-1;i>=1;i--)l[i]=max(l[i+1]+x[i],x[i]);//算最大子段
for(int i=n-1;i>=1;i--)l[i]=max(l[i+1],l[i]);//算最大子段
long long ans=f[1]+l[3];
for(int i=3;i<n;i++)ans=max(ans,f[i-1]+l[i+1]);//枚举中间数
cout<<ans;
return 0;
}
后记
这种预处理的方法可以优化我们的时间复杂度,避免重复计算,使我们的程序跑得更快!
题解 P2642 【双子序列最大和】的更多相关文章
- 【dp】P2642 双子序列最大和
题目描述 给定一个长度为n的整数序列,要求从中选出两个连续子序列,使得这两个连续子序列的序列和之和最大,最终只需输出最大和.一个连续子序列的和为该子序列中所有数之和.每个连续子序列的最小长度为1,并且 ...
- 简单DP【p2642】双子序列最大和
Description 给定一个长度为n的整数序列,要求从中选出两个连续子序列,使得这两个连续子序列的序列和之和最大,最终只需输出最大和.一个连续子序列的和为该子序列中所有数之和.每个连续子序列的最小 ...
- [Luogu 2642] 双子序列最大和
Description 给定一个长度为n的整数序列,要求从中选出两个连续子序列,使得这两个连续子序列的序列和之和最大,最终只需输出最大和.一个连续子序列的和为该子序列中所有数之和.每个连续子序列的最小 ...
- 【题解】SDOI2015序列统计
[题解]SDOI2015序列统计 来自永不AFO的YYB的推荐 这里是乘积,比较麻烦,不过由于给定的序列膜数是个小质数,所以可以\(O(m^2\log m)\)找原跟(实际上不需要这么多). 乘积有点 ...
- 【题解】FBI序列
题目描述 两伙外星人策划在未来的XXXX年侵略地球,侵略前自然要交换信息咯,现在,作为全球保卫队队长,你截获了外星人用来交换信息的一段仅由“F”,“B”,“I”,“O”组成的序列.为了保卫地球和平,为 ...
- 题解【bzoj1251 序列终结者】
Description 维护三个操作:区间加,区间翻转,区间求最大值.\(n \leq 50000\) Solution fhqtreap大法好! 模板题(我是不会告诉你这篇题解是用来存个代码的 Co ...
- 【题解】HNOI2016序列
也想了有半天,没有做出来……实际上做法确实也是十分精妙的.这里推荐一个blog,个人认为这位博主讲得挺好了:Sengxian's Blog; 感觉启示是:首先要加强对莫队算法 & ST表的熟练 ...
- [题解] LuoguP3321 [SDOI2015]序列统计
感觉这个题挺妙的...... 考虑最暴力的\(dp\),令\(f[i][j]\)表示生成大小为\(i\)的序列,积为\(j\)的方案数,这样做是\(O(nm)\)的. 转移就是 \[ f[i+1][j ...
- 【笔记】入门DP(Ⅱ)
0X00 P1433 吃奶酪 状压 \(DP\),把经过的点压缩成01串.若第 \(i\) 位为 \(0\) 表示未到达,为 \(1\) 则表示已到达. 用 \(f[i][j]\) 表示以 \(i\) ...
随机推荐
- 从Note 5看三星大招 究竟能不能秒杀iPhone
5看三星大招 究竟能不能秒杀iPhone" title="从Note 5看三星大招 究竟能不能秒杀iPhone"> 从当年HTC发布第一代Android手机G1开始 ...
- 用手机应用追踪城市噪声污染——微软Azure助力解决城市问题
噪声无孔不入的城市地带(图片来自于网络) 2014年4月19日发行的<经济学人>杂志预言,到2030年,中国人口的70%(约10亿人)会在城市中居住.中国城镇化的高速发展一方面大大提高了 ...
- Kafka常用命令及配置文件
创建topic,指定备份分区数 bin/kafka-topics.sh --create --zookeeper zk:2181 --replication-factor 2 --partitions ...
- C++走向远洋——27(项目三,时间类)
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:time.cpp * 作者:常轩 * 微信公众号:Worldhe ...
- Linux 环境 搭建Git 服务器,并且修改SSH端口使用
1.环境配置说明 服务器 CentOS 7 + git(git version 1.8.3.1) 客户端 Windows10 + SourceTree 2.安装 Git 服务器端安装: sudo yu ...
- python爬虫之字体反爬
一.什么是字体反爬? 字体反爬就是将关键性数据对应于其他Unicode编码,浏览器使用该页面自带的字体文件加载关键性数据,正常显示,而当我们将数据进行复制粘贴.爬取操作时,使用的还是标准的Unicod ...
- Java入门教程十(抽象类接口内部类匿名类)
抽象类(abstract) 一个类只定义了一个为所有子类共享的一般形式,至于细节则交给每一个子类去实现,这种类没有任何具体的实例,只具有一些抽象的概念,那么这样的类称为抽象类. 在面向对象领域,抽象类 ...
- Dart 运行速度测评与比较
引言 Dart 是一门优秀的跨平台语言,尽管生态方面略有欠缺,但无疑作为一门编程语言来说,Dart 是很优美,很健壮的,同时也引入了一些先进的编程范式,值得去学习. 测试内容 现在,我们就来测评一下D ...
- 面试题57-II.和为s的连续正数序列
面试题57-II.和为s的连续正数序列 1.题目 LeetCode-面试题57-II.和为s的连续正数序列 输入一个正整数 target ,输出所有和为 target 的连续正整数序列(至少含有两个数 ...
- javascript中你可能遇到的隐式调用
前言 不知道用隐式调用来形容是否确切,其行为总是隐藏在背后,时不时出来露脸一下,作用貌似不大,但是了解一下还是有用处的,保不准在你的使用下大有作为.所谓的隐式调用简单来说就是自动调用一些方法,而这些方 ...