沈阳网络赛F-Fantastic Graph【贪心】or【网络流】
"Oh, There is a bipartite graph.""Make it Fantastic."
X wants to check whether a bipartite graph is a fantastic graph. He has two fantastic numbers, and he wants to let all the degrees to between the two boundaries. You can pick up several edges from the current graph and try to make the degrees of every point to between the two boundaries. If you pick one edge, the degrees of two end points will both increase by one. Can you help X to check whether it is possible to fix the graph?
Input
There are at most 3030 test cases.
For each test case,The first line contains three integers NN the number of left part graph vertices, MM the number of right part graph vertices, and KK the number of edges ( 1 \le N \le 20001≤N≤2000,0 \le M \le 20000≤M≤2000,0 \le K \le 60000≤K≤6000 ). Vertices are numbered from 11to NN.
The second line contains two numbers L, RL,R (0 \le L \le R \le 300)(0≤L≤R≤300). The two fantastic numbers.
Then KK lines follows, each line containing two numbers UU, VV (1 \le U \le N,1 \le V \le M)(1≤U≤N,1≤V≤M). It shows that there is a directed edge from UU-th spot to VV-th spot.
Note. There may be multiple edges between two vertices.
Output
One line containing a sentence. Begin with the case number. If it is possible to pick some edges to make the graph fantastic, output "Yes"(without quote), else output "No" (without quote).
样例输入复制
3 3 7
2 3
1 2
2 3
1 3
3 2
3 3
2 1
2 1
3 3 7
3 4
1 2
2 3
1 3
3 2
3 3
2 1
2 1
样例输出复制
Case 1: Yes
Case 2: No
题目来源
题意:
有一个二分图 每个节点的初始分数为0
每选一条边 边的端点的分数都加1
问如果要求最后所有端点的分数都在l和r之间 可不可以做到
思路:
比赛的时候凌晓突然说这个是上下限网络流的模板题
于是一大帮人就想着怎么改模板 一直到比赛结束都没有改出来
真的没想到居然可以贪心 还好名额拿到了......
很简单的策略:
相当于删除一些边 使得节点的度数在l和r之间 最后剩下的边就是选择的边
枚举每条边 如果u, v的度都大于R 那么这条边肯定可以删掉
如果u的度大于R, v的度小于R却大于L 那么这条边也可以删掉
同理 uv交换也是
如果本来uv的度就在LR之间 就不用管了
最后检查每一个节点的度是不是在LR之间 结束
贪心AC:
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<vector>
#include<cmath>
#include<cstring>
#include<set>
//#include<bits/stdc++.h>
#define inf 0x7f7f7f7f7f7f7f7f
using namespace std;
typedef long long LL;
const int maxk = 6005;
const int maxn = 4005;
int n, m, k, l, r;
struct edge {
int u, v;
}e[maxk];
int degree[maxn];
void init()
{
memset(degree, 0, sizeof(degree));
}
int main()
{
int cas = 1;
while (scanf("%d%d%d", &n, &m, &k) != EOF) {
init();
scanf("%d%d", &l, &r);
for (int i = 0; i < k; i++) {
scanf("%d%d", &e[i].u, &e[i].v);
e[i].v += n;
degree[e[i].u]++;
degree[e[i].v]++;
}
for (int i = 0; i < k; i++) {
int a = e[i].u, b = e[i].v;
if (degree[a] > r && degree[b] > r) {
degree[a]--;
degree[b]--;
}
else if (degree[a] > l || degree[b] > l) {
degree[a]--;
degree[b]--;
}
}
bool flag = true;
for (int i = 1; i <= n + m; i++) {
if (degree[i] > r || degree[i] < l) {
flag = false;
break;
}
}
if (flag) {
printf("Case %d: Yes\n", cas++);
}
else {
printf("Case %d: No\n", cas++);
}
}
return 0;
}
上下限网络流的算法正在学习中......
沈阳网络赛F-Fantastic Graph【贪心】or【网络流】的更多相关文章
- ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph (贪心或有源汇上下界网络流)
"Oh, There is a bipartite graph.""Make it Fantastic."X wants to check whether a ...
- ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph (上下界网络流)
正解: #include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const int MAXN=1 ...
- ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph
"Oh, There is a bipartite graph.""Make it Fantastic." X wants to check whether a ...
- 沈阳网络赛 F - 上下界网络流
"Oh, There is a bipartite graph.""Make it Fantastic." X wants to check whether a ...
- ACM-ICPC 2018 沈阳赛区网络预赛 F Fantastic Graph(贪心或有源汇上下界网络流)
https://nanti.jisuanke.com/t/31447 题意 一个二分图,左边N个点,右边M个点,中间K条边,问你是否可以删掉边使得所有点的度数在[L,R]之间 分析 最大流不太会.. ...
- ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph(有源上下界最大流 模板)
关于有源上下界最大流: https://blog.csdn.net/regina8023/article/details/45815023 #include<cstdio> #includ ...
- 2018 ICPC 沈阳网络赛
2018 ICPC 沈阳网络赛 Call of Accepted 题目描述:求一个算式的最大值与最小值. solution 按普通算式计算方法做,只不过要同时记住最大值和最小值而已. Convex H ...
- ACM-ICPC 2019南昌网络赛F题 Megumi With String
ACM-ICPC 南昌网络赛F题 Megumi With String 题目描述 给一个长度为\(l\)的字符串\(S\),和关于\(x\)的\(k\)次多项式\(G[x]\).当一个字符串\(str ...
- 计蒜客 31447 - Fantastic Graph - [有源汇上下界可行流][2018ICPC沈阳网络预赛F题]
题目链接:https://nanti.jisuanke.com/t/31447 "Oh, There is a bipartite graph.""Make it Fan ...
随机推荐
- UIView的几个枚举定义
UIView是iOS开发最主要的视图,非常多控件都是继承它,掌握当中的几个基本枚举定义,有利益理解视图的载入和參数差别. 一.UIViewAnimationCurve UIView的基本动画变化规律 ...
- perl 内置操作符 $^O -判断操作系统环境
今天看bowtie2的源代码的时候,发现有这样一段用法: my $os_is_nix = $^O ne "MSWin32"; my $align_bin_s = $os_is_ni ...
- cake build使用:
开源地址: https://github.com/cake-build/cake 依赖 powershell 3.0 Windows 获取引导程序: Invoke-WebRequest http:// ...
- _mysql_exceptions.ProgrammingError:(2014, "commands out of sync; you can't run this command now")
今天,测试dashboard上的一些graph, 发现,当多个graph同时向后台请求数据(异步)的时候, 出现了上述错误.而且,三个bug交替出现,另外两个bug分别是:python stop re ...
- ASP.NET的用户控件
本文介绍如何在ASP.NET中创建用户控件,控件属性的动态修改以及控件的事件出发机制. 简介ASP.NET的服务端控件使得Web开发工作变得更为简单,功能更为强大.我们介绍过如何在ASP.NET页面中 ...
- angularJs 页面{{xxx}}使用三目运算符
<td>{{::item.sex=='w'?'女':'男'}}</td>,记得引号.也可以不用::,用不用::的区别,自行百度
- 3th January 2014
I owe my girl so much, i want to pay her, i know this is impossible,but I still try hard.
- 对于jsp中编码的理解
1.会话都是从客户端也就是浏览器开始发起的,首先用户将地址输入到地址栏中, 当用户输入enter或者点击转到的按钮时,浏览器会根据当前页面的charset对地址栏中的地址进行encode一次,当服务器 ...
- PL/SQL如何调试Oracle存储过程
from:http://jingyan.baidu.com/article/3a2f7c2e144d2826aed61167.html 调试过程对找到一个存过的bug或错误是非常重要的,Oracle作 ...
- Java精选笔记_Tomcat开发Web站点
Tomcat开发Web站点 Web开发的相关知识 B/S架构和C/S架构 C/S架构是Client/Server的简写,也就是客户机/服务器端的交互.常见应用 : QQ. 迅雷. 360. 旺旺等 B ...