沈阳网络赛F-Fantastic Graph【贪心】or【网络流】
"Oh, There is a bipartite graph.""Make it Fantastic."
X wants to check whether a bipartite graph is a fantastic graph. He has two fantastic numbers, and he wants to let all the degrees to between the two boundaries. You can pick up several edges from the current graph and try to make the degrees of every point to between the two boundaries. If you pick one edge, the degrees of two end points will both increase by one. Can you help X to check whether it is possible to fix the graph?
Input
There are at most 3030 test cases.
For each test case,The first line contains three integers NN the number of left part graph vertices, MM the number of right part graph vertices, and KK the number of edges ( 1 \le N \le 20001≤N≤2000,0 \le M \le 20000≤M≤2000,0 \le K \le 60000≤K≤6000 ). Vertices are numbered from 11to NN.
The second line contains two numbers L, RL,R (0 \le L \le R \le 300)(0≤L≤R≤300). The two fantastic numbers.
Then KK lines follows, each line containing two numbers UU, VV (1 \le U \le N,1 \le V \le M)(1≤U≤N,1≤V≤M). It shows that there is a directed edge from UU-th spot to VV-th spot.
Note. There may be multiple edges between two vertices.
Output
One line containing a sentence. Begin with the case number. If it is possible to pick some edges to make the graph fantastic, output "Yes"(without quote), else output "No" (without quote).
样例输入复制
3 3 7
2 3
1 2
2 3
1 3
3 2
3 3
2 1
2 1
3 3 7
3 4
1 2
2 3
1 3
3 2
3 3
2 1
2 1
样例输出复制
Case 1: Yes
Case 2: No
题目来源
题意:
有一个二分图 每个节点的初始分数为0
每选一条边 边的端点的分数都加1
问如果要求最后所有端点的分数都在l和r之间 可不可以做到
思路:
比赛的时候凌晓突然说这个是上下限网络流的模板题
于是一大帮人就想着怎么改模板 一直到比赛结束都没有改出来
真的没想到居然可以贪心 还好名额拿到了......
很简单的策略:
相当于删除一些边 使得节点的度数在l和r之间 最后剩下的边就是选择的边
枚举每条边 如果u, v的度都大于R 那么这条边肯定可以删掉
如果u的度大于R, v的度小于R却大于L 那么这条边也可以删掉
同理 uv交换也是
如果本来uv的度就在LR之间 就不用管了
最后检查每一个节点的度是不是在LR之间 结束
贪心AC:
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<vector>
#include<cmath>
#include<cstring>
#include<set>
//#include<bits/stdc++.h>
#define inf 0x7f7f7f7f7f7f7f7f
using namespace std;
typedef long long LL;
const int maxk = 6005;
const int maxn = 4005;
int n, m, k, l, r;
struct edge {
int u, v;
}e[maxk];
int degree[maxn];
void init()
{
memset(degree, 0, sizeof(degree));
}
int main()
{
int cas = 1;
while (scanf("%d%d%d", &n, &m, &k) != EOF) {
init();
scanf("%d%d", &l, &r);
for (int i = 0; i < k; i++) {
scanf("%d%d", &e[i].u, &e[i].v);
e[i].v += n;
degree[e[i].u]++;
degree[e[i].v]++;
}
for (int i = 0; i < k; i++) {
int a = e[i].u, b = e[i].v;
if (degree[a] > r && degree[b] > r) {
degree[a]--;
degree[b]--;
}
else if (degree[a] > l || degree[b] > l) {
degree[a]--;
degree[b]--;
}
}
bool flag = true;
for (int i = 1; i <= n + m; i++) {
if (degree[i] > r || degree[i] < l) {
flag = false;
break;
}
}
if (flag) {
printf("Case %d: Yes\n", cas++);
}
else {
printf("Case %d: No\n", cas++);
}
}
return 0;
}
上下限网络流的算法正在学习中......
沈阳网络赛F-Fantastic Graph【贪心】or【网络流】的更多相关文章
- ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph (贪心或有源汇上下界网络流)
"Oh, There is a bipartite graph.""Make it Fantastic."X wants to check whether a ...
- ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph (上下界网络流)
正解: #include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const int MAXN=1 ...
- ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph
"Oh, There is a bipartite graph.""Make it Fantastic." X wants to check whether a ...
- 沈阳网络赛 F - 上下界网络流
"Oh, There is a bipartite graph.""Make it Fantastic." X wants to check whether a ...
- ACM-ICPC 2018 沈阳赛区网络预赛 F Fantastic Graph(贪心或有源汇上下界网络流)
https://nanti.jisuanke.com/t/31447 题意 一个二分图,左边N个点,右边M个点,中间K条边,问你是否可以删掉边使得所有点的度数在[L,R]之间 分析 最大流不太会.. ...
- ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph(有源上下界最大流 模板)
关于有源上下界最大流: https://blog.csdn.net/regina8023/article/details/45815023 #include<cstdio> #includ ...
- 2018 ICPC 沈阳网络赛
2018 ICPC 沈阳网络赛 Call of Accepted 题目描述:求一个算式的最大值与最小值. solution 按普通算式计算方法做,只不过要同时记住最大值和最小值而已. Convex H ...
- ACM-ICPC 2019南昌网络赛F题 Megumi With String
ACM-ICPC 南昌网络赛F题 Megumi With String 题目描述 给一个长度为\(l\)的字符串\(S\),和关于\(x\)的\(k\)次多项式\(G[x]\).当一个字符串\(str ...
- 计蒜客 31447 - Fantastic Graph - [有源汇上下界可行流][2018ICPC沈阳网络预赛F题]
题目链接:https://nanti.jisuanke.com/t/31447 "Oh, There is a bipartite graph.""Make it Fan ...
随机推荐
- HGNC 数据库-人类基因组数据库
HGNC 全称为HUGO Gene Nomenclature Committee, 叫做 HUGO基因命名委员会,负责对人类基因组上包括蛋白编码基因, ncRNA基因,甲基因和其他基因在内的所有基因提 ...
- xshell-常用指令汇总 linux 常用指令
suse linux 常用命令 (1)命令ls——列出文件 ls -la 给出当前目录下所有文件的一个长列表,包括以句点开头的“隐藏”文件 ls a* 列出当前目录下以字母a开头的所有文件 l ...
- 微信支付(公众号支付APIJS、app支付)服务端统一下单接口java版
一.微信公众号支付APIJS: 要完整的实现微信支付功能,需要前后端一起实现,还需要微信商户平台的配置.这里只是涉及服务端的代码. jar包:pom.xml <!-- ↓↓↓↓↓↓↓↓ 支付相关 ...
- (转)Spring开启Annotation<context:annotation-config> 和 <context:component-scan>诠释及区别
转自:https://www.cnblogs.com/leiOOlei/p/3713989.html <context:annotation-config> 和 <context:c ...
- Hibernate学习(2):添加demo
- asp.net session的使用与过期实例代码
Session的使用 <head runat="server"> <title></title> <script src=&q ...
- 关于MFC中的OnPaint和OnDraw
当窗口发生改变后,会产生无效区域,这个无效的区域需要重画. 一般Windows会发送两个消息WM_PAINT(通知客户区 有变化)和WM_NCPAINT(通知非客户区有变化). 非客户区的重画系统自己 ...
- oracle函数学习_根据用户id获取用户角色
create or replace function FN_GET_ROLES(v_user_id varchar2) return varchar2 istype zy_emp_cursor is ...
- 2014年王道论坛研究生机试练习赛(二)set 2 货币问题
题目描述: 已知有面值为1元,2元,5元,10元,20元,50元,100元的货币若干(可认为无穷多),需支付价格为x的物品,并需要恰好支付,即没有找零产生.求,至少需要几张货币才能完成支付.如,若支付 ...
- 关于直播学习笔记-003-nginx-rtmp、srs、vlc、obs
服务器 1.nginx-rtmp:https://github.com/illuspas/nginx-rtmp-win32 2.srs:https://github.com/illuspas/srs- ...