cf1060E. Sergey and Subway(树形dp)
题意
Sol
很套路的题
直接考虑每个边的贡献,最后再把奇数点的贡献算上
#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define int long long
#define LL long long
#define rg register
#define pt(x) printf("%d ", x);
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
#define chmin(x, y) (x = x < y ? x : y)
using namespace std;
const int MAXN = 1e6 + 10, INF = 1e18 + 10, mod = 1e9 + 7;
const double eps = 1e-9;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, dep[MAXN], num[MAXN], siz[MAXN], ans, a2;
vector<int> v[MAXN];
void dfs(int x, int fa) {
dep[x] = dep[fa] + 1;
num[dep[x] & 1]++;
siz[x] = 1;
for(int i = 0; i < v[x].size(); i++) {
int to = v[x][i]; if(to == fa) continue;
dfs(to, x);
siz[x] += siz[to];
}
for(int i = 0; i < v[x].size(); i++) {
int to = v[x][i]; if(to == fa) continue;
ans += siz[to] * (N - siz[to]);
}
}
main() {
N = read();
for(int i = 1; i <= N - 1; i++) {
int x = read(), y = read();
v[x].push_back(y); v[y].push_back(x);
}
dfs(1, 0);
for(int i = 1; i <= N; i++) a2 += num[(dep[i] & 1) ^ 1];
printf("%lld", (ans + a2 / 2) / 2);
return 0;
}
cf1060E. Sergey and Subway(树形dp)的更多相关文章
- [CF1060E]Sergey and Subway[树dp]
题意 给出 \(n\) 个点的树,求 \(\sum_{i=1}^n{\sum_{j=i}^n{\lceil \frac{dis(i,j)}{2} \rceil}}\) . \(n\leq 2 \tim ...
- CF1060E Sergey and Subway(点分治)
给出一颗$N$个节点的树,现在我们**在原图中**每个不直接连边但是中间只间隔一个点的两个点之间连一条边. 比如**在原图中**$u$与$v$连边,$v$与$w$连边,但是$u$与$w$不连边,这时候 ...
- CF1060E Sergey and Subway 思维
分两种情况讨论 一种为奇数长为$L$的路径,在经过变化后,我们需要走$\frac{L}{2} + 1$步 一种为偶数长为$L$的路径,在变化后,我们需要走$\frac{L}{2}$步 那么,我们只需要 ...
- CF上部分树形DP练习题
本次 5 道题均来自Codeforce 关于树形DP的算法讲解:Here 791D. Bear and Tree Jumps 如果小熊每次能跳跃的距离为1,那么问题变为求树上任意两点之间距离之和. 对 ...
- poj3417 LCA + 树形dp
Network Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4478 Accepted: 1292 Descripti ...
- COGS 2532. [HZOI 2016]树之美 树形dp
可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...
- 【BZOJ-4726】Sabota? 树形DP
4726: [POI2017]Sabota? Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 128 Solved ...
- 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)
题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...
- 树形DP
切题ing!!!!! HDU 2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...
随机推荐
- isUserAMonkey? android真逗
QA报了个问题,说是无线热点下面的开关都没了,看了看代码,原来这是android的保护机制. 在涉及到用户信息的功能上,android会通过ActivityManagerNative.isUserAM ...
- Python文件中执行脚本注释和编码声明
在 Python 脚本的第一行经常见到这样的注释: #!/usr/bin/env python3 或者 #!/usr/bin/python3 含义 在脚本中, 第一行以 #! 开头的代码, 在计算机行 ...
- linux下安装gcc详解
1.了解一下gcc 目前,GCC可以用来编译C/C++.FORTRAN.JAVA.OBJC.ADA等语言的程序,可根据需要选择安装支持的语言.我自己linux上是4.1.2版本,是不支持openMP的 ...
- 【算法笔记】A1047 Student List for Course
https://pintia.cn/problem-sets/994805342720868352/problems/994805433955368960 题意 给出每个学生的选课情况,输出每节课选课 ...
- CentOS7.6下模拟iSCSI,Windows来连
如题,在CentOS7上模拟一个iSCSI设备,然后在Windows Server 2008上连接这个iSCSI设备 第一步,CentOS7上的操作.CentOS7上安装iSCSI模拟器需要3个包,我 ...
- 物联网学习之路——物联网通信技术:NBIoT
NBIoT是什么 NB-IoT,Narrow Band Internet of Things,窄带物联网,是一种专为万物互联打造的蜂窝网络连接技术.顾名思义,NB-IoT所占用的带宽很窄,只需约180 ...
- 解决FTPClient linux环境下FTPClient调用retrieveFileStream导致线程挂起(防火墙问题);下载文件小于实际文件问题
FTPClient调用retrieveFileStream导致线程挂起(防火墙问题):下载文件小于实际文件问题解决 实际是因为FTP的两种传输模式:主动模式和被动模式的不同而导致的 FTPClient ...
- Neo4j安装&入门&一些优缺点(转)
本篇将介绍Neo4j的安装,入门,和自己使用了一段时间后发现的优点缺点,争取简洁和实用. 如果你是第一次接触Neo4j,并且之前也都没接触过类似的Graph Database的话,建议先浏览一下我之前 ...
- Ubuntu+Mac使用飞鸽传书iptux进行互通
iptux不能直接与Mac版的IPMessage进行文件传输,但是可以和Windows的IPMessage进行互通.如果要实现Ubuntu和Mac下互通,就必须编译同一套代码,因为使用C++写的,所以 ...
- (转)2017年Linux运维人员必会开源运维工具体系
标签:操作系统 中间件 千里马 Linux 技能 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://oldboy.blog.51ct ...