【转】ROI Pooling】的更多相关文章

目标检测typical architecture 通常可以分为两个阶段: (1)region proposal:给定一张输入image找出objects可能存在的所有位置.这一阶段的输出应该是一系列object可能位置的bounding box.这些通常称之为region proposals或者 regions of interest(ROI). (2)final classification:确定上一阶段的每个region proposal是否属于目标一类或者背景. 这个architectur…
Faster-RCNN论文中在RoI-Head网络中,将128个RoI区域对应的feature map进行截取,而后利用RoI pooling层输出7*7大小的feature map.在pytorch中可以利用: torch.nn.functional.adaptive_max_pool2d(input, output_size, return_indices=False) torch.nn.AdaptiveMaxPool2d(output_size, return_indices=False)…
到底什么是 ROI Pooling Layer ??? 只知道 faster rcnn 中有 ROI pooling, 而且其他很多算法也都有用这个layer 来做一些事情,如:SINT,检测的文章等等.那么,到底什么是 ROI pooling 呢??? 参考:http://blog.csdn.net/lanran2/article/details/60143861 在 faster rcnn 中,RPN 会产生很多的候选 proposal,这里出来的是 BBox 的位置,也就是我们感兴趣的区域…
转自 https://blog.csdn.net/gbyy42299/article/details/80352418 Faster rcnn的整体构架: 训练的大致过程: 1.图片先缩放到MxN的尺寸,之后进入vgg16后得到(W/16,H/16)大小的feature map: 2.对于得到的大小为(W/16,H/16)的feature map上的每一个位置,都生成三种比例.三种(rotio.scale)尺度的anchors,Anchor即给出一个基准窗大小,按照倍数和长宽比例得到不同大小的窗…
原文链接:https://blog.deepsense.ai/region-of-interest-pooling-explained/ 目标检测typical architecture 通常可以分为两个阶段: (1)region proposal:给定一张输入image找出objects可能存在的所有位置.这一阶段的输出应该是一系列object可能位置的bounding box.这些通常称之为region proposals或者 regions of interest(ROI). (2)fin…
roi pooling是先进行roi projection(即映射)然后再池化 映射是把用来训练的图片的roi映射到最后一层特征层(即卷积层).方法其实很简单,图片经过特征提取后,到最后一层卷积层时,真个图片是原始图片的1/16,你把roi的4个坐标都乘以1/16,也就变成了在这个卷积层上对应的坐标.这和我当时把1920x1200图片转化为960x600进行的gt-roi变换是一样的. 得到roi在最后一层卷积层的坐标后,就把这个roi区域均分成HxW份,每份进行池化,最后再把这么多份conca…
Faster rcnn的整体构架: 训练的大致过程: 1.图片先缩放到MxN的尺寸,之后进入vgg16后得到(W/16,H/16)大小的feature map: 2.对于得到的大小为(W/16,H/16)的feature map上的每一个位置,都生成三种比例.三种(rotio.scale)尺度的anchors,Anchor即给出一个基准窗大小,按照倍数和长宽比例得到不同大小的窗.例如论文中基准窗大小为16,给了(8.16.32)三种倍数和(0.5.1.2)三种比例,这样能够得到一共9种尺度的an…
ROIs Pooling顾名思义,是pooling层的一种,而且是针对ROIs的pooling: 整个 ROI 的过程,就是将这些 proposal 抠出来的过程,得到大小统一的 feature map. 什么是ROI呢?(https://www.sogou.com/link?url=DOb0bgH2eKh1ibpaMGjuyy_CKu9VidU_Nm_z987mVIMm3Pojx-sH_PfgfR9iaaFcn666hxi--_g.) ROI是Region of interest的简写,指的是…
R-CNN需要大量的候选框,对每个候选框都提取特征,速度很慢,无法做到实时检测,无法做到端到端.ROI pooling层实现training和testing的显著加速,并提高检测accuracy. ROI pooling层能对不等尺寸的输入执行最大汇集以获得固定尺寸的特征映射,根据候选区域裁剪卷积特征图,然后用插值(通常是双线性的)将每个裁剪调整为固定大小(14×14×convdepth).裁剪之后,用 2x2 核大小的最大池化来获得每个建议最终的固定的 7×7×convdepth 特征图,然后…
这里说一下ROI Pool和ROI Align的区别: 一.ROI Pool层: 参考faster rcnn中的ROI Pool层,功能是将不同size的ROI区域映射到固定大小的feature map上,具体可实现可参考:https://www.cnblogs.com/zf-blog/p/7337944.html 它的缺点:由于两次量化带来的误差: (1)将候选框边界量化为整数点坐标值. (2)将量化后的边界区域平均分割成 k x k 个单元(bin),对每一个单元的边界进行量化. 下面我们用…
一直对Fast RCNN中ROI Pooling层不解,不同大小的窗口输入怎么样才能得到同样大小的窗口输出呢,今天看到一篇博文讲得挺好的,摘录一下,方便查找. Introduction 在一般的CNN结构中,在卷积层后面通常连接着全连接.而全连接层的特征数是固定的,所以在网络输入的时候,会固定输入的大小(fixed-size).但在现实中,我们的输入的图像尺寸总是不能满足输入时要求的大小.然而通常的手法就是裁剪(crop)和拉伸(warp). 这样做总是不好的:图像的纵横比(ratio aspe…
转自:blog.leanote.com/post/afanti.deng@gmail.com/b5f4f526490b ROI Align 是在Mask-RCNN这篇论文里提出的一种区域特征聚集方式, 很好地解决了ROI Pooling操作中两次量化造成的区域不匹配(mis-alignment)的问题.实验显示,在检测测任务中将 ROI Pooling 替换为 ROI Align 可以提升检测模型的准确性. 1. ROI Pooling 的局限性分析 在常见的两级检测框架(比如Fast-RCNN…
论文的关注点在于如何提高bounding box的定位,使用的是概率的预测形式,模型的基础是region proposal.论文提出一个locNet的深度网络,不在依赖于回归方程.论文中提到locnet可以很容易与现有的detection系统结合,但我困惑的是(1)它们的训练的方法,这点论文中没有明确的提到,而仅仅说用迭代的方法进行(2)到底两者的融合后两个网络的结构是怎样呢?可以看做一个多任务的系统,还是存在两个网络呢? 检测方法 输入的候选bounding box(使用selective s…
1.SPPnet池化过程 假设这个feature map的尺寸是M*N*256,将这个feature map的每一个channel以4*4,2*2和1*1来划分格子,每个格子里面做max pooling,这样就得到了256个21(4*4+2*2+1)数字的数组,然后合并得到尺寸为21*256的feature map.所有proposal对应的feature map都这样操作,就会得到统一的尺寸,然后进行FC连接.具体代码可参照:https://github.com/yueruchen/sppne…
1.roi pooling 将从rpn中得到的不同Proposal大小变为fixed_length output, 也就是将roi区域的卷积特征拆分成为H*W个网格,对每个网格进行maxpooling,然后就能得到固定大小的特征. 2.roi align 从原图的proposal映射回feature map,从原图到特征图直接的ROI映射使用双线性插值 形状不变 3.roi wrap 将fearure map 剪切一块,然后wrap到固定大小,采用长度和宽度两个方向的双线性插值. 形状改变 4.…
目标检测方法系列--R-CNN, SPP, Fast R-CNN, Faster R-CNN, YOLO, SSD 目录 相关背景 从传统方法到R-CNN 从R-CNN到SPP Fast R-CNN Faster R-CNN YOLO SSD 总结 参考文献 推荐链接 相关背景 14年以来的目标检测方法(以R-CNN框架为基础或对其改进) 各方法性能对比 分类,定位,检测三种视觉任务的简单对比 一般的目标检测方法 从传统方法到R-CNN R-CNN的三大步骤:得到候选区域,用cnn提取特征,训练…
Zhuoyao Zhong--[aixiv2016]DeepText A Unified Framework for Text Proposal Generation and Text Detection in Natural Images 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 问题讨论 总结与收获点 参考文献 作者和相关链接 作者 Zhuoyao Zhong, z.zhuoyao@mail.scut.sdu.cnLianwen Jin, lianwen.jin@gm…
很久之前试着写一篇深度学习的基础知识,无奈下笔之后发现这个话题确实太大,今天发一篇最近看的论文Fast RCNN.这篇文章是微软研究院的Ross Girshick大神的一篇作品,主要是对RCNN的一些改进,但是效果十分明显,paper和项目的地址都能从Ross Girshick的主页找到:http://people.eecs.berkeley.edu/~rbg/ 刚刚接触深度学习,难免纰漏很多,还请大神指教. 自己的百度云里也有一些相关内容http://pan.baidu.com/s/1o79N…
最近在看 Faster RCNN的Matlab code,发现很多matlab技巧,在此记录: 1. conf_proposal  =  proposal_config('image_means', model.mean_image, 'feat_stride', model.feat_stride); function conf = proposal_config(varargin) % conf = proposal_config(varargin) % ------------------…
http://closure11.com/rcnn-fast-rcnn-faster-rcnn%E7%9A%84%E4%B8%80%E4%BA%9B%E4%BA%8B/ 首先看fast r-cnn这篇论文,中间加入了有些博友的想法. 问题 目标检测主要面临两个问题:过多的候选位置(proposals):必须由这些粗略的候选位置中选出准确的位置. 这篇论文将学习目标proposals分类和精确定位结合起来. 1. R-CNN和SPPnet存在的问题 (1)R-CNN的问题 训练需要多阶段:先用Co…
继续上次的学习笔记,在RCNN之后是Fast RCNN,但是在Fast RCNN之前,我们先来看一个叫做SPP-net的网络架构. 一,SPP(空间金字塔池化,Spatial Pyramid Pooling)简介: 有一个事实需要说清楚:CNN的卷积层不需要固定尺寸的图像,全连接层是需要固定大小输入的,因此提出了SPP层放到卷积层的后面.SPPNet将任意大小的图像池化生成固定长度的图像表示,如下图所示: SPP的优点:1)任意尺寸输入,固定大小输出,2)层多,3)可对任意尺度提取的特征进行池化…
Analyzing The Papers Behind Facebook's Computer Vision Approach Introduction You know that company called Facebook? Yeah, the one that has 1.6 billion people hooked on their website. Take all of the happy birthday posts, embarrassing pictures of you…
Adit Deshpande CS Undergrad at UCLA ('19) Blog About The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3) Introduction Link to Part 1Link to Part 2 In this post, we’ll go into summarizing a lot of the new and important develo…
Is Faster R-CNN Doing Well for Pedestrian Detection? ECCV 2016   Liliang Zhang & Kaiming He 原文链接:http://arxiv.org/pdf/1607.07032v2.pdf Code : https://github.com/zhangliliang/RPN_BF/tree/RPN-pedestrian 摘要:行人检测被人 argue 说是特定课题,而不是general 的物体检测.虽然最近的深度物体…
Instance-aware Semantic Segmentation via Multi-task Network Cascades Jifeng Dai Kaiming He Jian Sun 本文的出发点是做Instance-aware Semantic Segmentation,但是为了做好这个,作者将其分为三个子任务来做: 1) Differentiating instances. 实例区分 2) Estimating masks. 掩膜估计 3) Categorizing obje…
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in this task according to this metric; authors are willing to reveal the method White background = authors are willing to reveal the method Grey background…
object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别. object detection技术的演进:RCNN->SppNET->Fast-RCNN->Faster-RCNN 从图像识别的任务说起这里有一个图像任务:既…
目录: 1. 序言 2.正文 2.1  关于ROI 2.2  关于RPN 2.3 关于anchor 3. 关于数据集合制作 4. 关于参数设置 5. 参考 1.序言 叽歪一下目标检测这个模型吧,这篇笔记是依据我对源码的阅读和参考一些博客,还有rbg的论文之后,这里描述一下个人对于faster-rcnn的一些微小的了解,只是总结一些关键点的理解. 首先看一下这张faster-rcnn整体的图: 2.正文 我们在细说这些关键节点的时候,首先让我们来看一下这个框架,这个图谱是引用的http://sha…
摘要 近年来,深度学习方法在物体跟踪领域有不少成功应用,并逐渐在性能上超越传统方法.本文先对现有基于深度学习的目标跟踪算法进行了分类梳理,后续会分篇对各个算法进行详细描述. 看上方给出的3张图片,它们分别是同一个视频的第1,40,80帧.在第1帧给出一个跑步者的边框(bounding-box)之后,后续的第40帧,80帧,bounding-box依然准确圈出了同一个跑步者.以上展示的其实就是目标跟踪(visual object tracking)的过程.目标跟踪(特指单目标跟踪)是指:给出目标在…
R-FCN论文翻译 R-FCN: Object Detection viaRegion-based Fully Convolutional Networks 2018.2.6   论文地址:R-FCN: Object Detection via Region-based Fully Convolutional Networks  代码地址:https://github.com/daijifeng001/r-fcn(matlab版) https://github.com/YuwenXiong/py…