欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识,线性回归因为它的简单,易用,且可以求出闭合解,被广泛地运用在各种机器学习应用中.事实上,除了单独使用,线性回归也是很多其他算法的组成部分.线性回归的缺点也是很明显的,因为线性回归是输入到输出的线性变换,拟合能力有限:另外,线性回归的目标值可以是(−∞,+∞),而有的时候,目标值的范围是[0,1](可…
原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D%A6%E7%A6%8F%E5%A4%A7%E5%AD%A6%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AC%AC%E5%85%AD%E8%AF%BE-%E9%80%BB%E8%BE%91%E5%9B%9E%E5%BD%92-logistic-regression…
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 3.  逻辑回归 Logistic Regression 1 分类Classification 首先引入了分类问题的概念——在分类(Classification)问题中,所需要预测的$y$是离散值.例如判断一封邮件是否属于垃圾邮件.判断一个在线交…
机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问题:预测一个连续的输出. 分类问题:离散输出,比如二分类问题输出0或1. 逻辑回归常用于垃圾邮件分类,天气预测.疾病判断和广告投放. 一.假设函数 因为是一个分类问题,所以我们希望有一个假设函数,使得: 而sigmoid 函数可以很好的满足这个性质: 故假设函数: 其实逻辑回归为什么要用sigmoi…
逻辑回归(Logistic Regression) 线性回归用来预测,逻辑回归用来分类. 线性回归是拟合函数,逻辑回归是预测函数 逻辑回归就是分类. 分类问题用线性方程是不行的   线性方程拟合的是连续的值 逻辑回归是分类问题   比如肿瘤问题    只有 0 ,1 两种情况 逻辑回归的方程写成 X是特征向量   theta是参数向量    theta转置乘以特征向量 就是参数与特征相乘 g代表逻辑函数     一个常用的s型逻辑函数就是 : 图为: python代码为: 的意义呢     因为…
原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 到 1 之间(不包括 0 和 1)的概率值,而不是确切地预测结果是 0 还是 1. 1- 计算概率 许多问题需要将概率估算值作为输出.逻辑回归是一种极其高效的概率计算机制,返回的是概率(输出值始终落在 0 和 1 之间).可以通过如下两种方式使用返回的概率: “按原样”:“原样”使用返回的概率(例如…
逻辑回归 Logistic Regression 1 分类 Classification 首先我们来看看使用线性回归来解决分类会出现的问题.下图中,我们加入了一个训练集,产生的新的假设函数使得我们进行分类出现了错误:而且线性回归计算的结果往往会远小于0或者远大于1,这对于0,1分类变得很奇怪.可见线性回归并不适用与分类.下面介绍的逻辑回归的结果总是在[0,1],适用于分类,其实逻辑回归是一种分类算法. 2 假设函数Hypothesis Representation 逻辑回归假设函数为: 其中 是…
逻辑回归(Logistic Regression) 什么是逻辑回归: 逻辑回归(Logistic Regression)是一种基于概率的模式识别算法,虽然名字中带"回归",但实际上是一种分类方法,在实际应用中,逻辑回归可以说是应用最广泛的机器学习算法之一 回归问题怎么解决分类问题? 将样本的特征和样本发生的概率联系起来,而概率是一个数.换句话说,我预测的是这个样本发生的概率是多少,所以可以管它叫做回归问题 在许多机器学习算法中,我们都是在追求这样的一个函数 例如我们希望预测一个学生的成…
逻辑回归(Logistic Regression)是广义线性回归的一种.逻辑回归是用来做分类任务的常用算法.分类任务的目标是找一个函数,把观测值匹配到相关的类和标签上.比如一个人有没有病,又因为噪声的干扰,条件的描述的不够完全,所以可能不确定正确,还希望得到一个概率,比如有病的概率是80%.也即P(Y|X),对于输入X,产生Y的概率,Y可取两类,1或者0. 推导 Sigmod函数 相当于线性模型的计算结果来逼近真实01标记的对数几率. 他的导数: 对数线性模型 概率P的值域是[0,1],线性函数…
一.Logistic回归 Logistic回归(Logistic Regression,简称LR)是一种常用的处理二类分类问题的模型. 在二类分类问题中,把因变量y可能属于的两个类分别称为负类和正类,则因变量y∈{0, 1},其中0表示负类,1表示正类.线性回归的输出值在负无穷到正无穷的范围上,不太好解决这个问题.于是我们引入非线性变换,把线性回归的输出值压缩到(0, 1)之间,那就成了Logistic回归,使得≥0.5时,预测y=1,而当<0.5时,预测y=0.Logistic回归的名字中尽管…
0. 前言   这学期 Pattern Recognition 课程的 project 之一是手写数字识别,之二是做一个网站验证码的识别(鸭梨不小哇).面包要一口一口吃,先尝试把模式识别的经典问题——手写数字识别做出来吧.这系列博客参考deep learning tutorial ,记录下用以下三种方法的实现过程: Logistic Regression - using Theano for something simple Multilayer perceptron - introductio…
ex2data1.txt ex2data2.txt 本次算法的背景是,假如你是一个大学的管理者,你需要根据学生之前的成绩(两门科目)来预测该学生是否能进入该大学. 根据题意,我们不难分辨出这是一种二分类的逻辑回归,输入x有两种(科目1与科目2),输出有两种(能进入本大学与不能进入本大学).输入测试样例以已经本文最前面贴出分别有两组数据. 我们在进行逻辑回归之前,通常想把数据数据更为直观的显示出来,那么我们根据输入样例绘制图像. function plotData(X, y) %PLOTDATA…
本系列内容大部分来自Standford公开课machine learning中Andrew老师的讲解,附加自己的一些理解,编程实现和学习笔记. 第一章 Logistic regression 1.逻辑回归 逻辑回归是一种监督学习的分类算法,相比较之前的线性回归算法,差别在于它是一个分类算法,这也意味着y不再是一个连续的值,而是{0,1}的离散值(两类问题的情况下). 当然这依然是一个判别学习算法,所谓判别学习算法,就是我们直接去预测后验 ,或者说直接预测判别函数的算法.当然相对应的生成学习算法,…
逻辑回归(Logistic Regression) 假设函数(Hypothesis Function) \(h_\theta(x)=g(\theta^Tx)=g(z)=\frac{1}{1+e^{-z}}=\frac{1}{1+e^{\theta^Tx}}\) g函数称为 Sigmoid Function 或 Logistic Function, 它可以使得 \(0 \leq h_\theta (x) \leq 1\). The following image shows us what the…
python信用评分卡建模(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share sklearn逻辑回归官网调参指南 https://scikit-learn.org/stable/modules/generated/sklearn.linear…
6.1  分类问题 6.2  假说表示 6.3  判定边界 6.4  代价函数 6.5  简化的成本函数和梯度下降 6.6  高级优化 6.7  多类分类:一个对所有 6.1  分类问题 在分类问题中,我们尝试预测的是结果是否属于某一个类(例如正确或错误).分类问题的例子有:判断一封电子邮件是否是垃圾邮件:判断一次金融交易是否是欺诈等等. 我们从二元的分类问题开始讨论.       我们将因变量(dependant variable)可能属于的两个类分别称为负向类(negative class)…
6.1  分类问题 6.2  假说表示 6.3  判定边界 6.4  代价函数 6.5  简化的成本函数和梯度下降 6.6  高级优化 6.7  多类分类:一个对所有 6.1  分类问题 在分类问题中,我们尝试预测的结果是否属于某一个类(例如正确或错误).分类问题的例子有:判断一封电子邮件是否是垃圾邮件:判断一次金融交易是否是欺诈等等. 我们从二元的分类问题开始讨论.       我们将因变量(dependant variable)可能属于的两个类分别称为负向类(negative class)和…
逻辑回归算法是分类算法,虽然这个算法的名字中出现了"回归",但逻辑回归算法实际上是一种分类算法,我们将它作为分类算法使用.. 分类问题:对于每个样本,判断它属于N个类中的那个类或哪几个类.通常我们判定一个样本,若我们预测它的确属于这个类的可能性大于50%,则认为它属于这个类.当然具体选择50%还是70%还是其他要看具体情况,这里先默认50%. 线性回归的局限性在分类问题的例子中变得不可靠:这是一个用来预测肿瘤是否呈阴性的模型,当一个肿瘤的尺寸大于一个数,我们就认为这个肿瘤呈阴性.我们现…
class sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver=’liblinear’, max_iter=100, multi_class=’ovr’, verbose=0, warm_start=False…
在之前的问题讨论中,研究的都是连续值,即y的输出是一个连续的值.但是在分类问题中,要预测的值是离散的值,就是预测的结果是否属于某一个类.例如:判断一封电子邮件是否是垃圾邮件:判断一次金融交易是否是欺诈:之前我们也谈到了肿瘤分类问题的例子,区别一个肿瘤是恶性的还是良性的. 我们先说二分类问题,我们将一些自变量分为负向类和正向类,那么因变量为0,1:0表示负向类,1表示正向类. 如果用线性回归来讨论分类问题,那么假设输出的结果会大于1,但是我们的假设函数的输出应该是在0,1之间.所以我们把输出结果在…
在逻辑回归中使用mnist数据集.导入相应的包以及数据集. import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('data/', one_hot=True) trainimg = mnist.train.images…
在说逻辑回归之前,可以先说一说逻辑回归与线性回归的区别: 逻辑回归与线性回归在学习规则形式上是完全一致的,它们的区别在于hθ(x(i))为什么样的函数 当hθ(x(i))=θTx(i)时,表示的是线性回归,它的任务是做回归用的. 当时,表示的是逻辑回归,假定模型服从二项分布,使用最大似然函数推导的,它的任务是做分类用的,逻辑回归是一个广义的线性模型,是对数线性模型. 下面就是逻辑回归的推导过程了 首先我们来看看核函数即sigmoid函数的对Z的导数 这个结果在后续的推导过程会用到,这里的Z我们可…
6.1 分类问题 在分类问题中,你要预测的变量…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 开一个机器学习方法科普系列:做基础回顾之用,学而时习之:也拿出来与大家分享.数学水平有限,只求易懂,学习与工作够用.周期会比较长,因为我还想写一些其他的,呵呵. content: linear regression, Ridge, Lasso Logistic Regression, Softmax Kmeans, GMM, EM, Spectral Clustering Dimensionality R…
本文讨论的关键词:Logistic Regression(逻辑回归).Neural Networks(神经网络) 之前在学习LR和NN的时候,一直对它们独立学习思考,就简单当做是机器学习中的两个不同的models,从来没有放在一起观察过,最近通过阅读网络资料,才发现,原来LR和NN之间是有一定的联系的,了解它们之间的联系后,可以更好地理解 Logistic Regression(逻辑回归)和Neural Networks(神经网络) Logistic Regression:典型的二值分类器,用来…
逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核心.本文主要详述逻辑回归模型的基础,至于逻辑回归模型的优化.逻辑回归与计算广告学等,请关注后续文章. 1 逻辑回归模型 回归是一种极易理解的模型,就相当于y=f(x),表明自变量x与因变量y的关系.最常见问题有如医生治病时的望.闻.问.切,之后判定病人是否生病或生了什么病,其中的望闻问切就是获取自变…
逻辑回归模型(Logistic Regression, LR)基础   逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核心.本文主要详述逻辑回归模型的基础,至于逻辑回归模型的优化.逻辑回归与计算广告学等,请关注后续文章. 1 逻辑回归模型 回归是一种极易理解的模型,就相当于y=f(x),表明自变量x与因变量y的关系.最常见问题有如医生治病时的望.…
逻辑回归--简介 逻辑回归(Logistic Regression)就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏.        Logistic回归虽然名字里带"回归",但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别).        回归模型中,y是一个定性变量,比如y=0或1,logistic方法主要应用于研究某些事件发生的概率. 逻辑回归--优缺点 优…
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 本文主要讲解分类问题中的逻辑回归.逻辑回归是一个二分类问题. 二分类问题 二分类问题是指预测的y值只有两个取值(0或1),二分类问题可以扩展到多分类问题.例如:我们要做一个垃圾邮件过滤系统,是邮件的特征,预测的y值就是邮件的类别,是垃圾邮件还是正常邮件.对于类别我们通常称为正类(positive class)和负类(negative class),垃圾邮件的例子中,正类就是正常邮件,负类就是垃圾邮件.…
出自BYRans博客:http://www.cnblogs.com/BYRans/ 本文主要讲解分类问题中的逻辑回归.逻辑回归是一个二分类问题. 二分类问题 二分类问题是指预测的y值只有两个取值(0或1),二分类问题可以扩展到多分类问题.例如:我们要做一个垃圾邮件过滤系统,是邮件的特征,预测的y值就是邮件的类别,是垃圾邮件还是正常邮件.对于类别我们通常称为正类(positive class)和负类(negative class),垃圾邮件的例子中,正类就是正常邮件,负类就是垃圾邮件. 逻辑回归…