在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论文中给出了常用优化器的比较,今天来学习一下:https://arxiv.org/pdf/1609.04747.pdf 本文将梳理: 每个算法的梯度更新规则和缺点 为了应对这个不足而提出的下一个算法 超参数的一般设定值 几种算法的效果比较 选择哪种算法 0.梯度下降法深入理解 以下为个人总结,如有错误…
指数加权平均 (exponentially weighted averges) 先说一下指数加权平均, 公式如下: \[v_{t}=\beta v_{t-1}+(1-\beta) \theta_{t} \] \(\theta_t\) 是第t天的观测值 \(v_t\) 是用来替代\(\theta_t\)的估计值,也就是加权平均值 \(\beta\) 超参数 设 \(\beta = 0.9\) , 那么公式可以化简为: \[v_{100} = 0.1 * \theta_t + 0.1 * 0.9 *…
[转载]机器学习优化方法总结:SGD,Momentum,AdaGrad,RMSProp,Adam https://blog.csdn.net/u010089444/article/details/76725843 这篇博客格式不好直接粘贴,就不附原文了. 有几个点可以注意下,原文没有写的很清楚: 优化方法的作用是什么? 可以说,没有优化方法,机器学习模型一般一样可以执行,所以说它并不是必须的.但是优化方法可以动态调整学习率以及影响迭代中参数调整的方向和幅度,可以加速收敛,是对原方法的一种优化.…
参考: https://blog.csdn.net/u010089444/article/details/76725843 1. SGD Batch Gradient Descent 在每一轮的训练过程中,Batch Gradient Descent算法用整个训练集的数据计算cost fuction的梯度,并用该梯度对模型参数进行更新: 优点: cost fuction若为凸函数,能够保证收敛到全局最优值:若为非凸函数,能够收敛到局部最优值 缺点: 由于每轮迭代都需要在整个数据集上计算一次,所以…
机器学习的常见优化方法在最近的学习中经常遇到,但是还是不够精通.将自己的学习记录下来,以备不时之需 基础知识: 机器学习几乎所有的算法都要利用损失函数 lossfunction 来检验算法模型的优劣,同时利用损失函数来提升算法模型. 这个提升的过程就叫做优化(Optimizer) 下面这个内容主要就是介绍可以用来优化损失函数的常用方法 常用的优化方法(Optimizer): 1.SGD&BGD&Mini-BGD: SGD(stochastic gradient descent):随机梯度下…
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid.softmax.tanh.relu.leakyrelu.elu.selu.softplus):https://www.cnblogs.com/xiximayou/p/127130…
前言 这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x(权重),使得f(x)的值最小. 本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的原理. SGD SGD指stochastic gradient descent,即随机梯度下降.是梯度下降的batch版本. 对于训练数据集,我们首先将其分成n个batch,每个batch包含m个样本.我们每次更新都利用一个batch的数据,而非整个训练集.即: 其中,η为学习率,gt为x在t时刻的梯度. 这么做的好处在于: 当训…
前言 这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x,使得f(x)的值最小. 本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的原理. Batch gradient descent 梯度更新规则: BGD 采用整个训练集的数据来计算 cost function 对参数的梯度:     缺点: 由于这种方法是在一次更新中,就对整个数据集计算梯度,所以计算起来非常慢,遇到很大量的数据集也会非常棘手,而且不能投入新数据实时更新模型. 我们会事先定义一个迭代次数 epoc…
深度学习编译与优化Deep Learning Compiler and Optimizer…
基于NVIDIA GPUs的深度学习训练新优化 New Optimizations To Accelerate Deep Learning Training on NVIDIA GPUs 不同行业采用人工智能的速度取决于最大化数据科学家的生产力.NVIDIA每月都会发布优化的NGC容器,为深度学习框架和库提高性能,帮助科学家最大限度地发挥潜力.英伟达持续投资于全数据科学堆栈,包括GPU架构.系统和软件堆栈.这一整体方法为深度学习模型训练提供了最佳性能,正如NVIDIA赢得了提交给MLPerf的所…