申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. In [1]: import numpy as np In [2]: import pandas as pd In [3]: from pandas import DataFrame,Series In [4]: data = {'class':['语文','数学','英语'],'score':[120,130,140]} In [5]: frame = DataFrame(data)…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 1 pandas读取文件的解析函数 read_csv 读取带分隔符的数据,默认分隔符 逗号 read_table 读取带分隔符的数据,默认分隔符 “\t” read_fwf 读取定宽.列格式数据(无分隔符) read_clipboard 读取剪贴板中的数据(将网页转换为表格) 1.1 读取excel数据 import pandas as pd import numpy as np fi…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 层次化索引主要解决低纬度形式处理高纬度数据的问题 import pandas as pd import numpy as np from pandas import Series,DataFrame data = Series(np.random.randn(12),index=[['],['张三','李四','王五','张三','李四','王五','张三','李四','王五','张三…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 1 读取excel数据 import pandas as pd import numpy as np file = 'D:\example.xls' df = pd.DataFrame(pd.read_excel(file)) df 2 检测缺失值 2.1 isnull返回一个含有布尔值的对象 import pandas as pd import numpy as np file =…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 第一 重新索引 Series的reindex方法 In [15]: obj = Series([3,2,5,7,6,9,0,1,4,8],index=['a','b','c','d','e','f','g', ...: 'h','i','j']) In [16]: obj1 = obj.reindex(['a','b','c','d','e','f','g','h','i','j','…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 首先,需要导入pandas库的Series和DataFrame In [21]: from pandas import Series,DataFrame In [22]: import pandas as pd Series 是一种类似一维数组的对象,是一组数据与索引的组合.如果没设置索引,默认会加上. In [23]: obj = Series([4,3,5,7,8,1,2]) In…
1 认识Figure和Subplot import matplotlib.pyplot as plt matplotlib的图像都位于Figure对象中 fg = plt.figure() 通过add_subplot创建subplot ax1 = fg.add_subplot(1,2,1) ax2 = fg.add_subplot(1,2,2) 设置坐标轴的范围 plt.xlim((-1, 1))plt.ylim((0, 3)) 设置坐标轴的lable matplotlib.pyplot.xla…
1 合并数据集 pandas.merge pandas.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None) import pandas as pd from pandas impor…
pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索引:   还有一种汇总是累计型的,cumsum(),比较它和 sum() 的区别: unique() 方法用于返回数据里的唯一值:   value_counts() 方法用于统计各值出现的频率:   isin() 方法用于判断成员资格:   安装步骤已经在首篇随笔里写过了,这里不在赘述.利用 Pyt…
利用Python进行数据分析--Numpy基础:数组和矢量计算 ndarry,一个具有矢量运算和复杂广播能力快速节省空间的多维数组 对整组数据进行快速运算的标准数学函数,无需for-loop 用于读写磁盘数据的工具以及用于操作内存映射文件的工具? 线性代数.随机数生成以及傅里叶变换功能 用于集成C/C++等代码的工具 一.ndarry:一种多维数组对象 1.创建ndarry #一维 In [5]: data = [1,2,3] In [6]: import numpy as np In [7]:…