import sys, os sys.path.append('F:\ml\DL\source-code') from dataset.mnist import load_mnist from PIL import Image import numpy as np #pickle提供了一个简单的持久化功能.可以将对象以文件的形式存放在磁盘上. #pickle模块只能在python中使用,python中几乎所有的数据类型(列表,字典,集合,类等)都可以用pickle来序列化, #pickle序列化…
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例代码: import tensorflow as tf l1 = tf.matmul(x, w1) l2 = tf.matmul(l1, w2) y = tf.matmul(l2,w3) 1.2,激活层:引入激活函数,让每一层去线性化 激活函数有多种,例如常用的 tf.nn.relu  tf.nn.…
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有Hello World,机器学习入门有MNIST.在此节,我将训练一个机器学习模型用于预测图片里面的数字. 开始先普及一下基础知识,我们所说的图片是通过像素来定义的,即每个像素点的颜色不同,其对应的颜色值不同,例如黑白图片的颜色值为0到255,手写体字符,白色的地方为0,黑色为1,如下图. MNIST…
通过GAN生成式对抗网络,产生mnist数据 引入包,数据约定等 import numpy as np import matplotlib.pyplot as plt import input_data #读取数据的一个工具文件,不影响理解 import tensorflow as tf # 获取数据 mnist = input_data.read_data_sets('data/', one_hot=True) trainimg = mnist.train.images X = mnist.t…
一段时间没有更新博文,想着也该写两篇文章玩玩了.而从一个简单的例子作为开端是一个比较不错的选择.本文章会手把手地教读者构建一个简单的Mnist(Fashion-Mnist同理)的分类器,并且会使用相对完整的Pytorch训练框架,因此对于初学者来说应该会是一个方便入门且便于阅读的文章.本文的代码来源于我刚学Pytorch时的小项目,可能在形式上会有引用一些github上的小代码.同时文风可能会和我之前看的一些外国博客有点相近. 本文适用对象: 刚入门的Pytorch新手,想要用Pytorch来完…
这个程序参考自极客学院. from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf # MNIST数据存放的路径 file = "./MNIST" # 导入数据 mnist = input_data.read_data_sets(file, one_hot=True) # 模型的输入和输出 x = tf.placeholder(tf.float32, shape=[None, 7…
MNIST是一个非常有名的手写体数字识别数据集,在很多资料中,这个数据集都会被用作深度学习的入门样例.而TensorFlow的封装让使用MNIST数据集变得更加方便.MNIST数据集是NIST数据集的一个子集,它包含了60000张图片作为训练数据,10000张图片作为测试数据.在MNIST数据集中的每一张图片都代表了0~9中的一个数字.图片的大小都为28*28,且数字都会出现在图片的正中间,如下图所示: 在上图中右侧显示了一张数字1的图片,而右侧显示了这个图片所对应的像素矩阵,MNIST数据集提…
MNIST数据集 MNIST数据集是Yan Lecun整理出来的. NIST是美国国家标准与技术研究院(National Institute of Standards and Technology)的简称,NIST这个机构整理了两套数据集Special Dataset 3和Special Dataset 1,SD3数据集是从人口普查机构的工作人员那里收集上来的,SD1数据集是从在校学生那里收集来的,SD3数据比较干净.识别起来比较简单(人口普查机构工作人员比在校学生靠谱).YanLecun把这两…
基于tensorflow使用CNN识别MNIST 参数数量:第一个卷积层5x5x1x32=800个参数,第二个卷积层5x5x32x64=51200个参数,第三个全连接层7x7x64x1024=3211264个参数,第四个输出层1024x10=10240个参数,总量级为330万个参数,单机训练时间约为30分钟. 关于优化算法:随机梯度下降法的learning rate需要逐渐变小,因为随机抽取样本引入了噪音,使得我们在最小点处的随机梯度仍然不为0.对于batch gradient descent不…
前言 这篇文章时承继上一篇机器学习经典模型使用归一化的影响.这次又有了新的任务,通过将label错位来对未来数据做预测. 实验过程 使用不同的归一化方法,不同得模型将测试集label错位,计算出MSE的大小: 不断增大错位的数据的个数,并计算出MSE,并画图.通过比较MSE(均方误差,mean-square error)的大小来得出结论 过程及结果 数据处理(和上一篇的处理方式相同): test_sort_data = sort_data[:] test_sort_target = sort_t…