本节介绍Series和DataFrame中的数据的基本手段 重新索引 pandas对象的一个重要方法就是reindex,作用是创建一个适应新索引的新对象 >>> from pandas import Series,DataFrame >>> obj=Series([4.5,7.2,-5.3,3.6],index=['d','b','a','c']) >>> obj d 4.5 b 7.2 a -5.3 c 3.6 dtype: float64#rein…
一.pandas的数据结构介绍 Series Series是由一种类似于一维数组的对象,它由一组数据以及一组与之相关的数据索引构成.仅由一组数据可产生最简单的Series. obj=Series([4,5,-7,6]) Series字符串表现形式为索引在左边,值在右边. 通过Series的index方法获取索引,values方法获取值.可通过索引的方式获取Series中的单个或者一组值 >>>obj2 a 4 b 7 c -5 d 3 dtype: int64#可以通过索引的方式获取值…
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法combine_first()方法:合并重叠数据. pandas.merge()方法:数据库风格的合并   例如,通过merge()方法将两个DataFrame合并: on='name'的意思是将name列当作键: 默认情况下,merge做的是内连接(inner),即键的交集. 其他方式还有左连接(l…
pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索引:   还有一种汇总是累计型的,cumsum(),比较它和 sum() 的区别: unique() 方法用于返回数据里的唯一值:   value_counts() 方法用于统计各值出现的频率:   isin() 方法用于判断成员资格:   安装步骤已经在首篇随笔里写过了,这里不在赘述.利用 Pyt…
一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 fill_value 参数指定填充值. 例如:   fill_value 会让所有的缺失值都填充为同一个值,如果不想这样而是用相邻的元素(左或者右)的值填充,则可以用 method 参数,可选的参数值为 ffill 和 bfill,分别为用前值填充和用后值填充: 针对 DataFrame   重新…
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构:Series 和 DataFrame. 二.Series Series 是一个一维数组对象 ,类似于 NumPy 的一维 array.它除了包含一组数据还包含一组索引,所以可以把它理解为一组带索引的数组. 将 Python 数组转换成 Series 对象: 将 Python 字典转换成 Serie…
转自https://zhuanlan.zhihu.com/p/26100976 目录: 5.1 pandas 的数据结构介绍5.1.1 Series5.1.2 DataFrame5.1.3索引对象5.2基本功能 5.2.1重新索引5.2.2丢弃指定轴上的项5.2.3索引.选取和过滤5.2.4算术运算和数据对齐5.2.4.1在算术方法中填充值5.2.4.2 DataFrame和Series之间的运算5.2.5函数应用和映射5.2.6排序和排名5.2.7带有重复的轴索引5.3汇总和计算描述性统计5.…
  数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理方法为滤掉或者填充. 滤除缺失数据   对于一个Series,dropna()函数返回一个包含非空数据和索引值的Series,例如: 对于DataFrame,dropna()函数同样会丢掉所有含有空元素的数据,例如:   但是可以指定how='all',这表示只有行里的数据全部为空时才丢弃,例如:…
原文地址 怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 今天是5.1号. 这一部分主要学习pandas中基于前面两种数据结构的基本操作. 设有DataFrame结果的数据a如下所示: a b c one 411 two 620 three 616 一.查看数据(查看对象的方法对于Series来说同样适用) 1.查看DataFrame前xx行或后xx行 a=DataFrame(data); a.head(6)表示显示前6行…
数据转换指的是对数据的过滤.清理以及其他的转换操作. 移除重复数据 DataFrame里经常会出现重复行,DataFrame提供一个duplicated()方法检测各行是否重复,另一个drop_duplicates()方法用于丢弃重复行: duplicated()和drop_duplicates()方法默认判断全部列,如果不想这样,传入列的集合作为参数可以指定按列判断,例如: duplicated()和drop_duplicates()方法默认保留第一个出现的值,传入take_last=True…
  字符串对象方法 split()方法拆分字符串: strip()方法去掉空白符和换行符: split()结合strip()使用: "+"符号可以将多个字符串连接起来: join()方法也是连接字符串,比较它和"+"符号的区别: in关键字判断一个字符串是否包含在另一个字符串中: index()方法和find()方法判断一个子字符串的位置: index()方法和find()方法的区别是:如果不包含子字符串,index()会抛出一个异常,而find()会返回-1. c…
  层次化索引 层次化索引指你能在一个数组上拥有多个索引,例如: 有点像Excel里的合并单元格对么? 根据索引选择数据子集   以外层索引的方式选择数据子集: 以内层索引的方式选择数据: 多重索引Series转换为DataFrame   层次化索引在数据重塑和分组中扮演着很重要的角色,例如,上面的层次化索引数据可以转换为一个DataFrame: 对于一个DataFrame,横轴和竖轴都可以有层次化索引,例如: 重排分级顺序 根据索引交换 swaplevel()函数可以将两个级别的数据进行交换,…
重塑定义     重塑指的是将数据重新排列,也叫轴向旋转. DataFrame提供了两个方法: stack: 将数据的列“旋转”为行. unstack:将数据的行“旋转”为列. 例如: 处理堆叠格式   堆叠格式也叫长格式,一般关系型数据库存储时间序列的数据会采用此种格式,例如: 虽然这种存储格式对于关系型数据库是好的,不仅保持了关系完整性还提供了方便的查询支持,但是对于数据操作可能就不那么方便了,DataFrame的数据格式才更加方便. DataFrame的pivot()方法提供了这个转换,例…
利用Python进行数据分析--重要的Python库介绍 一.NumPy 用于数组执行元素级计算及直接对数组执行数学运算 线性代数运算.傅里叶运算.随机数的生成 用于C/C++等代码的集成 二.pandas 快速便捷的处理结构化数据,DataFrame是一个面向列的二维表数据 兼具NumPy的数组计算功能以及电子表格和关系型数据库的数据处理功能 可以快速的重塑.切片和切块以及选取数据子集 三.SciPy 主要介绍以下包: scipy.integrate 数值积分例程和微分方程求解器 scipy.…
总结一下自己对python常用包:Numpy,Pandas,Matplotlib,Scipy,Scikit-learn 一. Numpy: 标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指 针.这样为了保存一个简单的[1,2,3],需要有3个指针和三个整数对象.对于数值运算来说这种结构显然比较浪费内存和CPU计算时间. 此外Python还提供了一个array模块,array对象和列表不同,它直接保存数值,和…
利用Python进行数据分析-Pandas: 在Pandas库中最重要的两个数据类型,分别是Series和DataFrame.如下的内容主要围绕这两个方面展开叙述! 在进行数据分析时,我们知道有两个基础的第三方库在数据处理时显得尤为重要,即分别为NumPy库和Pandas库,前面的章节我们对于NumPy的入门有了详细的介绍,这个章节我们主要是对于Pandas库进行系统的总结.说一点题外话,之前对于学习知识的时候,基本上都是在网上看视频,但是看视频的时候,当时基本上都能够理解并且觉得很简单,也没有…
利用Python进行数据分析--pandas入门 基于NumPy建立的 from pandas importSeries,DataFrame,import pandas as pd 一.两种数据结构 1.Series 类似于Python的字典,有索引和值 创建Series #不指定索引,默认创建0-N In [54]: obj = Series([1,2,3,4,5]) In [55]: obj Out[55]: 0 1 1 2 2 3 3 4 4 5 dtype: int64 #指定索引 In…
<利用Python进行数据分析·第2版>第五章 pandas入门--基础对象.操作.规则 python引用.浅拷贝.深拷贝 / 视图.副本 视图=引用 副本=浅拷贝/深拷贝 浅拷贝/深拷贝区别 浅拷贝:拷贝对象的副本,但内部子对象还是引用(如果list内还有小list,小list改变会使原对象变化 .copy/python切片/ * 运算 深拷贝:父对象子对象副本全都拷贝,没有引用 .deepcopy 第五章:pandas入门 pandas: Series:类数组数据结构 DataFrame:…
所有内容整理自<利用Python进行数据分析>,使用MindMaster Pro 7.3制作,emmx格式,源文件已经上传Github,需要的同学转左上角自行下载或者右击保存图片. 其他章节知识图谱<利用Python进行数据分析>自学知识图谱-导航…
http://www.cnblogs.com/batteryhp/p/4868348.html 第一章 准备工作 今天开始码这本书--<利用python进行数据分析>.R和python都得会用才行,这是码这本书的原因.首先按照书上说的进行安装,google下载了epd_free-7.3-1-win-x86.msi,译者建议按照作者的版本安装,EPDFree包括了Numpy,Scipy,matplotlib,Chaco,IPython.这里的pandas需要自己安装,对应版本为pandas-0.…
最近在阅读<利用Python进行数据分析>,本篇博文作为读书笔记 ,记录一下阅读书签和实践心得. 准备工作 python环境配置好了,可以参见我之前的博文<基于Python的数据分析(1):配置安装环境>.还需要安装第三方包包括NumPy.pandas.matplotlib.IPython.SciPy.用pip安装工具下载自动安装即可,如果有网络问题,请在自行百度"host google"更新host文件. 接下来是配置IPython,初步感受了这个与之前接触的…
<利用Python进行数据分析·第2版> 第 1 章 准备工作第 2 章 Python 语法基础,IPython 和 Jupyter第 3 章 Python 的数据结构.函数和文件第 4 章 NumPy 基础:数组和矢量计算第 5 章 pandas 入门第 6 章 数据加载.存储与文件格式第 7 章 数据清洗和准备第 8 章 数据规整:聚合.合并和重塑第 9 章 绘图和可视化第 10 章 数据聚合与分组运算第 11 章 时间序列第 12 章 pandas 高级应用第 13 章 Python 建…
第2版针对Python 3.6进行全面修订和更新,涵盖新版的pandas.NumPy.IPython和Jupyter,并增加大量实际案例,可以帮助高效解决一系列数据分析问题. 第2版中的主要更新了Python第三方发布版Anaconda和其他所需Python包的安装指引: 更新pandas库到2017年的新版: 新增一章关于更多高级pandas工具和一些使用提示:新增statsmodels和scikit-learn的简明使用介绍. 学习参考: <利用Python进行数据分析(第二版)>高清中文…
<利用Python进行数据分析·第2版>第四章 Numpy基础:数组和矢量计算 numpy高效处理大数组的数据原因: numpy是在一个连续的内存块中存储数据,独立于其他python内置对象.其C语言编写的算法库可以操作内存而不必进行其他工作.比起内置序列,使用的内存更少(即时间更快,空间更少) numpy可以在整个数组上执行复杂的计算,而不需要借助python的for循环 4.0 前提知识 数据:结构化的数据代指所有的通用数据,如表格型,多维数组,关键列,时间序列等 相关包:numpy pa…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 1 pandas读取文件的解析函数 read_csv 读取带分隔符的数据,默认分隔符 逗号 read_table 读取带分隔符的数据,默认分隔符 “\t” read_fwf 读取定宽.列格式数据(无分隔符) read_clipboard 读取剪贴板中的数据(将网页转换为表格) 1.1 读取excel数据 import pandas as pd import numpy as np fi…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 首先,需要导入pandas库的Series和DataFrame In [21]: from pandas import Series,DataFrame In [22]: import pandas as pd Series 是一种类似一维数组的对象,是一组数据与索引的组合.如果没设置索引,默认会加上. In [23]: obj = Series([4,3,5,7,8,1,2]) In…
matplotlib API入门 使用matplotlib的办法最常用的方式是pylab的ipython,pylab模式还会向ipython引入一大堆模块和函数提供一种更接近与matlab的界面,matplotlib API函数位于matplotlib.pyplot模块中,其通常的引入约定是:import matplot.pyplot as plt 1.Figure和Subplot matplotlib的图像都位于Figure对象中,你可以用plt.figure创建一个新的Figure,不能通过…
学习一门语言就是不断实践,python是目前用于数据分析最流行的语言,我最近买了本书<利用python进行数据分析>(Wes McKinney著),还去图书馆借了本<Python数据分析基础教程--NumPy学习指南>(第二版),准备将python数据分析工具的门给入了哈哈,闲话少说,直接切入正题. 首先<利用python进行数据分析>此书的译者强烈建议计算机环境的配置最好与书上的一致,所以我找了半天书上要求用的安装包 第一,安装32位的EPDFree(书上的版本就是3…
本文主要介绍IPython这样一个交互工具的基本用法. 1. 简介 IPython是<利用Python进行数据分析>一书中主要用到的Python开发环境,简单来说是对原生python交互环境的增强.作者进行Python开发最经典的开发环境搭配是:IPython外加一个文本编辑器,其实我自己平时写python代码也差不多是这样的开发环境:Windows系统下是IPython加notepad++,Linux系统下是IPython加vim,写起代码来体验很流畅,很容易获取到那种"流体验&q…
以此记录阅读和学习<利用Python进行数据分析>这本书中的觉得重要的点! 第一章:准备工作 1.一组新闻文章可以被处理为一张词频表,这张词频表可以用于情感分析. 2.大多数软件是由两部分代码组成:少量需要占用大部分执行时间的代码,以及大量不经常执行的“粘合剂代码”. cython已经成为python领域中创建编译型扩展以及对接c/c++代码的一大途径. 3.在那些要求延迟性非常小的应用程序中(例如高频交易系统),为了尽最大可能地优化性能,耗费时间使用诸如C++这样更低级.更低生产率的语言进行…