How to implement a neural network】的更多相关文章

神经网络的实践笔记 link: http://peterroelants.github.io/posts/neural_network_implementation_part01/ 1. 生成训练数据 import numpy as np import matplotlib.pyplot as plt # 神经网络中有关# 矩阵的运算我们采用NumPy来构建,# 画图使用Matplotlib来构建. # Part 1, create training data # Define the vect…
code地址:https://github.com/dennybritz/nn-from-scratch 文章地址:http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/ Get the code: To follow along, all the code is also available as an iPython notebook on Github. In this post we will i…
Coding according to TensorFlow 官方文档中文版 中文注释源于:tf.truncated_normal与tf.random_normal TF-卷积函数 tf.nn.conv2d 介绍 TensorFlow - tf.nn.conv2d tf.nn.max_pool参数含义和用法 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = inpu…
A Neural Network in 11 lines of Python A bare bones neural network implementation to describe the inner workings of backpropagation. Posted by iamtrask on July 12, 2015 Summary: I learn best with toy code that I can play with. This tutorial teaches b…
整理自Andrew Ng的machine learning课程week6. 目录: Advice for applying machine learning (Decide what to do next) Debugging a learning algorithm machine learning diagnostic Evaluating a hypothesis Model selection and Train / validation / test set Bias and Vari…
0 - 学习目标 我们将实现一个简单的3层神经网络,我们不会仔细推到所需要的数学公式,但我们会给出我们这样做的直观解释.注意,此次代码并不能达到非常好的效果,可以自己进一步调整或者完成课后练习来进行改进. 1 - 实验步骤 1.1 - Import Packages # Package imports import matplotlib.pyplot as plt import numpy as np import sklearn import sklearn.datasets import s…
Building your Recurrent Neural Network - Step by Step Welcome to Course 5's first assignment! In this assignment, you will implement your first Recurrent Neural Network in numpy. Recurrent Neural Networks (RNN) are very effective for Natural Language…
Deep Neural Network for Image Classification: Application 预先实现的代码,保存在本地 dnn_app_utils_v3.py import numpy as np import matplotlib.pyplot as plt import h5py def sigmoid(Z): """ Implements the sigmoid activation in numpy Arguments: Z -- numpy…
Building your Deep Neural Network: Step by Step 你将使用下面函数来构建一个深层神经网络来实现图像分类. 使用像relu这的非线性单元来改进你的模型 构建一个多隐藏层的神经网络(有超过一个隐藏层) 符号说明: 1 - Packages(导入的包) numpy:进行科学计算的包 matplotlib :绘图包 dnn_utils:提供一些必要功能 testCases 提供一些测试用例来评估函数的正确性 np.random.seed(1) 设置随机数种子…
Logistic Regression with a Neural Network mindset You will learn to: Build the general architecture of a learning algorithm, including: Initializing parameters(初始化参数) Calculating the cost function and its gradient(计算代价函数,和他的梯度) Using an optimization…
Deep Neural Network - Application Congratulations! Welcome to the fourth programming exercise of the deep learning specialization. You will now use everything you have learned to build a deep neural network that classifies cat vs. non-cat images. In…
Building your Deep Neural Network: Step by Step Welcome to your third programming exercise of the deep learning specialization. You will implement all the building blocks of a neural network and use these building blocks in the next assignment to bui…
Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exercise of the deep learning specialization. In this notebook you will build your first image recognition algorithm. You will build a cat classifier that r…
1. Build a logistic regression model, structured as a shallow neural network2. Implement the main steps of an ML algorithm, including making predictions, derivative computation, and gradient descent.3. Implement computationally efficient, highly vect…
1. Feedforward and cost function; 2.Regularized cost function: 3.Sigmoid gradient The gradient for the sigmoid function can be computed as: where: 4.Random initialization randInitializeWeights.m function W = randInitializeWeights(L_in, L_out) %RANDIN…
Finally pass all the Deeplearning.ai courses in March! I highly recommend it! If you already know the basic then you may be interested in course 4 & 5, which shows many interesting cases in CNN and RNN. Although I do think that 1 & 2 is better str…
前馈神经网络(Feedforward Neural Network - BP) 常见的前馈神经网络 感知器网络 感知器(又叫感知机)是最简单的前馈网络,它主要用于模式分类,也可用在基于模式分类的学习控制和多模态控制中.感知器网络可分为单层感知器网络和多层感知器网络. BP网络 BP网络是指连接权调整采用了反向传播(Back Propagation)学习算法的前馈网络.与感知器不同之处在于,BP网络的神经元变换函数采用了S形函数(Sigmoid函数),因此输出量是0~1之间的连续量,可实现从输入到…
本章涉及到的若干知识点(红字):本章节是作为通往Tensorflow的前奏! 链接:https://www.zhihu.com/question/27823925/answer/38460833 首先,神经网络的最后一层,也就是输出层,是一个 Logistic Regression (或者 Softmax Regression ),也就是一个线性分类器. 那么,输入层和中间那些隐层又在干吗呢?你可以把它们看成一种特征提取的过程,就是把 Logistic Regression 的输出当作特征,然后…
Building your Recurrent Neural Network - Step by Step Welcome to Course 5's first assignment! In this assignment, you will implement your first Recurrent Neural Network in numpy. Recurrent Neural Networks (RNN) are very effective for Natural Language…
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS TUTORIAL, PART 1 – INTRODUCTION TO RNNS . Recurrent Neural Networks(RNNS) ,循环神经网络,是一个流行的模型,已经在许多NLP任务上显示出巨大的潜力.尽管它最近很流行,但是我发现能够解释RNN如何工作,以及如何实现RNN的资料很少…
http://blog.csdn.net/ljp1919/article/details/42556261 Neural Network Toolbox为各种复杂的非线性系统的建模提供多种函数和应用程序.该工具箱提供各种监督学习模型:前向反馈,径向基核函数和动态网络等模型.同时也提供自组织图和竞争层结构(competitive layers)的非监督学习模型.该工具箱具有设计.训练.可视化与仿真神经网络的功能.基于该工具箱可以进行数据拟合.模式识别.分类和时间序列预测及其动态系统的建模和控制.…
<Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any function文章总结(前三章翻译在百度云里) 链接:http://neuralnetworksanddeeplearning.com/chap4.html: Michael Nielsen的<Neural Network and Deep Learning>教程中的第四章主要是证明神经网络可以用…
refer to: 机器学习公开课笔记(5):神经网络(Neural Network) CS224d笔记3--神经网络 深度学习与自然语言处理(4)_斯坦福cs224d 大作业测验1与解答 CS224d Problem set 1作业 softmax: def softmax(x): assert len(x.shape) > 1 x -= np.max(x, axis=1, keepdims=True) x = np.exp(x) / np.sum(np.exp(x), axis=1, kee…
XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 总结与收获点 作者和相关链接 作者 论文下载 廖明辉,石葆光, 白翔, 王兴刚 ,刘文予 代码下载 方法概括 文章核心: 改进版的SSD用来解决文字检测问题 端到端识别的pipeline: Step 1: 图像输入到修改版SSD网络中 + 非极大值抑制(NMS)→…
Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 问题讨论 总结与收获点 作者补充信息 参考文献 作者和相关链接 论文下载 作者: tong he, 黄伟林,乔宇,姚剑 方法概括 使用改进版的MSER(CE-MSERs,contrast-enhancement)提取候选字符区域: 使用新的CN…
白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 2.  论文思路和方法 1)  问题范围: 单词识别 2)  CNN层:使用标准CNN提取图像特征,利用Map-to-Sequence表示成特征向量: 3)  RNN层:使…
转自:http://www.asimovinstitute.org/neural-network-zoo/ THE NEURAL NETWORK ZOO POSTED ON SEPTEMBER 14, 2016 BY FJODOR VAN VEEN   With new neural network architectures popping up every now and then, it's hard to keep track of them all. Knowing all the a…
LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016   Neural Networks these days are the "go to" thing when talking about new fads in machine learning. As such, there's a plethora of courses and tutorials out there on the basic vani…
1. 概述 前面我们已经介绍了最早的神经网络:感知机.感知机一个非常致命的缺点是由于它的线性结构,其只能做线性预测(甚至无法解决回归问题),这也是其在当时广为诟病的一个点. 虽然感知机无法解决非线性问题,但是其给非线性问题的解决提供了一个思路.感知机的局限来自于其线性结构,如果我们能够给其加入非线性结构,比如先给输入做一个非线性变换,这样其就能拟合非线性问题.那么这就是我们这次要讲的前向神经网络. 2. 结构 前向神经网络(Feed-forward Neural Network)是一种多层的网络…
Reference:   Alex Graves的[Supervised Sequence Labelling with RecurrentNeural Networks] Alex是RNN最著名变种,LSTM发明者Jürgen Schmidhuber的高徒,现加入University of Toronto,拜师Hinton. 统计语言模型与序列学习 1.1 基于频数统计的语言模型 NLP领域最著名的语言模型莫过于N-Gram. 它基于马尔可夫假设,当然,这是一个2-Gram(Bi-Gram)模…