传送门 题目大意应该都清楚. 今天看到一篇博客用分块+莫对做了这道题,直接惊呆了. 首先常规地离散化后将询问分块,对于某一询问,将莫队指针移动到指定区间,移动的同时处理权值分块的数字出现次数(单独.整块),莫队完后,现在的权值分块就是关于当前区间的.然后再从左到右扫描分块,直到数字个数+该块个数>=k,这时进入该块逐个加,当数字个数>=k时,直接跳出输出离散化之前的数字. 试了很多种块的大小,最后还是选择sqrt(100000) ≈ 320,时间比我的主席树还少(肯定是我写的丑). code…
传送门 题意:多组询问,问区间[l,r]中权值在[a,b]间的数的种类数. 看了一眼大家应该都知道要莫队了吧. 然后很容易想到用树状数组优化修改和查询做到O(mnlogamax)O(m\sqrt nlog_{a_{max}})O(mn​logamax​​)的时间复杂度. 然后发现可以上一波权值分块,这样的话可以平衡结合降低时间复杂度到O(mn+mamax)O(m\sqrt n+m\sqrt {a_{max}})O(mn​+mamax​​) 代码: #include<bits/stdc++.h>…
显然若一个数大于n就不可能是答案. #include <iostream> #include <cstring> #include <cstdio> #include <algorithm> #include <map> #include <cmath> using namespace std; ; struct Info{int l,r,Id;}P[Maxn]; int a[Maxn],U[Maxn],Pos[Maxn],Belon…
K-th Number Poj - 2104 主席树 题意 给你n数字,然后有m次询问,询问一段区间内的第k小的数. 解题思路 这个题是限时训练做的题,我不会,看到这个题我开始是拒绝的,虽然题意清晰简单,但是真的不会.限时结束后,学长说这个题是简单的主席树的入门题,我没学过啊. 如果你也没有学过的话,建议看我的另一篇博客,上面有自己的总结和一些博客推荐,就不用自己一个一个找了,点我进去. 哦, 这个题是主席树的模板题. 代码实现 #include<cstdio> #include<cst…
题目链接:http://poj.org/problem?id=2104 主席树入门题目,主席树其实就是可持久化权值线段树,rt[i]维护了前i个数中第i大(小)的数出现次数的信息,通过查询两棵树的差即可得到第k大(小)元素. #include<cstdio> #include<vector> #include<algorithm> using namespace std; #define lson(i) node[i].lson #define rson(i) node…
题目链接  HH的项链 这道题可以直接上主席树的模板 #include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i) #define dec(i, a, b) for (int i(a); i >= (b); --i) typedef long long LL; const int N = 5e4 + 10; const int M = 3e6 + 10…
K-th Number Time Limit: 20000MS   Memory Limit: 65536K Total Submissions: 44940   Accepted: 14946 Case Time Limit: 2000MS Description You are working for Macrohard company in data structures department. After failing your previous task about key inse…
#include <iostream> #include <cstdio> #include <algorithm> int const maxn = 200010; using namespace std; int a[maxn], b[maxn]; //第几个版本的根节点编号 int root[maxn << 5]; int lc[maxn << 5], rc[maxn << 5], sum[maxn << 5]; i…
不带修改主席树裸题<=>莫队+权值分块裸题. 复杂度O(m*sqrt(n)). P.S.题目描述坑爹,第二个数是权值的范围. #include<cstdio> #include<algorithm> #include<cmath> using namespace std; #define N 300001 #define M 10001 int f,c; inline void R(int &x){ c=0;f=1; for(;c<'0'||c…
这题用了三种算法写: 分块+二分:O(n*sqrt(n*log(n)) 函数式权值分块:O(n*sqrt(n)) 带修莫队+权值分块:O(n5/3) 结果……复杂度越高的实际上跑得越快……最后这个竟然进第一页了…… #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using namespace std; int f,C; inline void R(int &…
题意:在树中找到一个点i,并且找到这个点子树中的一些点组成一个集合,使得集合中的所有点的c之和不超过M,且Li*集合中元素个数和最大 首先,我们将树处理出dfs序,将子树询问转化成区间询问. 然后我们发现,对于单一节点来说,“使得集合中的所有点的c之和不超过M,且Li*集合中元素个数和最大”可以贪心地搞,即优先选择c较小的点.(<--这正是主席树/权值线段树/权值分块的工作) 但是我们需要枚举所有节点,从他们中选一个最大的. 既然有dfs序了,那么就是无修改的区间询问咯.(<--莫队的工作)…
先用莫队算法保证在询问之间转移的复杂度,每次转移都需要进行O(sqrt(m))次插入和删除,权值分块的插入/删除是O(1)的. 然后询问的时候用权值分块查询区间k小值,每次是O(sqrt(n))的. 所以总共的复杂度是O(m*(sqrt(n)+sqrt(m)))的. 常数极小. 别的按权值维护的数据结构无法做到O(1)地插入删除. poj2104 的输出优化 别忘了处理负数. 完爆主席树,这份代码目前在 poj2761 上 Rank1. Rank Run ID User Memory Time…
[算法一] 暴力. 可以通过第0.1号测试点. 预计得分:20分. [算法二] 经典问题:区间众数,数据范围也不是很大,因此我们可以: ①分块,离散化,预处理出: <1>前i块中x出现的次数(差分): <2>第i块到第j块中的众数是谁,出现了多少次. 询问的时候,对于整块的部分直接获得答案:对于零散的部分,暴力统计每个数出现 的次数,加上差分的结果,尝试更新ans. 时间复杂度O(m*sqrt(n)), 空间复杂度O(n*sqrt(n)). ②考虑离线,莫队算法,转移的时候使用数据…
传送门--Gym 传送门--BZOJ THUWC2019D1T1撞题可还行 以前有些人做过还问过我,但是我没有珍惜,直到进入考场才追悔莫及-- 设\(que_{i,j}\)表示询问\((1,i,1,j)\)的答案,那么询问\((a,b,c,d)=que_{b,d} - que_{a-1 , d} - que_{b , c - 1} + que_{a - 1 , c - 1}\) 把一个询问拆成\(4\)个询问,然后对这\(4\)个询问莫队就可以了 不知道怎么回事THUWC上想到了莫队想到了前缀和…
题目描述 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家 乐和和.红星幼儿园的小朋友们排起了长长地队伍,准备吃果果.不过因为小朋友们的身高有所区别,排成的队伍 高低错乱,极不美观.设第i个小朋友的身高为hi,我们定义一个序列的杂乱程度为:满足ihj的(i,j)数量.幼儿 园阿姨每次会选出两个小朋友,交换他们的位置,请你帮忙计算出每次交换后,序列的杂乱程度.为方便幼儿园阿 姨统计,在未进行任何交换操作时,你也应该输出该序列的杂乱程度. 输入 第…
传送门 乱搞题. 我直接对权值分块+莫队水过了. 不过调了30min30min30min发现ststst表挂了是真的不想说什么233. 代码…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3781 就是莫队,左端点分块排序,块内按右端点排序,然后直接做即可. 代码如下: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; typedef long long ll…
orz PoPoQQQ. 本来蒟蒻以为这种离散化以后就对应不起来的题不能权值分块搞的说. ……结果,实际上>n的权值不会对答案作出贡献. #include<cstdio> #include<cmath> #include<algorithm> using namespace std; #define N 200002 #define BN 452 int n,m,num[N],a[N],l[BN],size[BN],anss[N],b[N],sumv[BN]; s…
Dynamic Rankings(树状数组套权值线段树) 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+2]--a[j]中第k小的数是多少(1≤k≤j-i+1),并且,你可以改变一些a[i]的值,改变后,程序还能针对改变后的a继续回答上面的问题.你需要编一个这样的程序,从输入文件中读入序列a,然后读入一系列的指令,包括询问指令和修改指令. 对于每一个询问指令,你必须输出正确的回答.有两个正整数n(…
带修改区间K大值 这题有很多做法,我的做法是树状数组套权值线段树,修改查询的时候都是按着树状数组的规则找出那log(n)个线段树根,然后一起往下做 时空都是$O(nlog^2n)$的(如果离散化了的话),空间可能会被卡,但实际上点数不用开到特别大,N*200也能过 #include<bits/stdc++.h> #define pa pair<int,int> #define CLR(a,x) memset(a,x,sizeof(a)) using namespace std; t…
经典问题:二维偏序.给定平面中的n个点,求每个点左下方的点的个数. 因为 所有点已经以y为第一关键字,x为第二关键字排好序,所以我们按读入顺序处理,仅仅需要计算x坐标小于<=某个点的点有多少个就行. 这就是所说的:n维偏序,一维排序,二维树状数组,三维 分治 Or 树状数组套平衡树…… <法一>树状数组. #include<cstdio> #include<algorithm> #include<iostream> using namespace st…
权值分块,虽然渐进复杂度不忍直视,但其极小的常数使得实际运行起来比平衡树快,大多数情况和递归版权值线段树差不多,有时甚至更快.但是被zkw线段树完虐. #include<cstdio> #include<algorithm> #include<cmath> using namespace std; #define N 1000001 ; ],r[],sumv[],sz,sum,num[N]; bool b[N]; void makeblock() { sz=sqrt(n…
\(\color{#0066ff}{ 题目描述 }\) 给定整数 \(n\) 和两个 \(1,\dots,n\) 的排列 \(a,b\). \(m\) 个操作,操作有两种: \(1\ l_a\ r_a\ l_b\ r_b\),设 \(a\) 的 \([l_a;r_a]\) 区间内的元素集合为 \(S_a\),设 \(b\) 的 \([l_b;r_b]\) 区间内的元素集合为 \(S_b\),求 \(\lvert S_a \bigcap S_b \rvert\). \(2\ x\ y\),交换 \…
[BZOJ 3295] [luogu 3157] [CQOI2011] 动态逆序对 (树状数组套权值线段树) 题面 给出一个长度为n的排列,每次操作删除一个数,求每次操作前排列逆序对的个数 分析 每次都对整个序列求逆序对显然不行,考虑每次删除对逆序对个数的影响 假如删除的数为x,x在序列中的位置为pos[x],那么包含x的逆序对个数为位置在[1,pos[x]-1]中大于x的数+位置在[pos[x]+1,n]中小于x的数,每次删除只要减去这些就可以了 那么这个问题其实就转化成查询位置在[L,R]内…
裸题,直接上.复杂度O(n*sqrt(n)*log(n)). //Num[i]表示树中的点i在函数式权值分块中对应的点 //Map[i]表示函数式权值分块中的点i在树中对应的点 #include<cstdio> #include<algorithm> #include<cmath> using namespace std; #define N 80001 #define INF 2147483647 #define NN 87001 #define BN 296 int…
论某O(n*sqrt(n))的带修改区间k大值算法. 首先对序列分块,分成sqrt(n)块. 然后对权值分块,共维护sqrt(n)个权值分块,对于权值分块T[i],存储了序列分块的前i块的权值情况. 对于区间询问,需要获得区间中每个值出现的次数,然后按权值扫O(sqrt(n)),完整的部分我们可以通过权值分块差分(O(1))得到(比如Lb~Rb块就是T[Rb]-T[Lb-1]),零散的部分我们再维护一个额外的权值分块,累计上该值即可.O(sqrt(n)). 对于修改,直接在该位置之后的所有权值分…
枚举长度为m的所有段,尝试用中位数更新答案. 所以需要数据结构,支持查询k大,以及大于/小于 k大值 的数的和. 平衡树.权值线段树.权值分块什么的随便呢. #include<cstdio> #include<algorithm> #include<cmath> using namespace std; typedef long long ll; ]; bool operator < (const Point &a,const Point &b){…
以下部分来自:http://www.cnblogs.com/zhuohan123/p/3726306.html 此证明有误. DZY系列. 这题首先是几个性质: 1.所有球质量相同,碰撞直接交换速度,而球又没有编号,那么就可以直接视作两个球没有碰撞. 2.所有的方向.初始位置都没有任何用处. 然后就是速度的问题了,根据题设 a⋅v=C   与这几个方程联立   a⋅v=C s=v·t; vt2=v02+2·a·s   解这个方程组,可以得到 vt=√(2·C·t+v02) 决定了,我们只需要找到…
权值分块和权值线段树的思想一致,离散化之后可以代替平衡树的部分功能. 部分操作的时间复杂度: 插入 删除 全局排名 全局K大 前驱 后继 全局最值 按值域删除元素 O(1) O(1) O(sqrt(n)) O(sqrt(n)) O(sqrt(n)) O(sqrt(n)) O(sqrt(n)) O(sqrt(n))(懒标记) 当然,因为要离散化,所以只能离线. 代码很短,很快,比我的Splay短一倍,快一倍,现在在bzoj上rank6. #include<cstdio> #include<…
#include<cstdio> #include<cmath> #include<algorithm> using namespace std; #define N 50001 #define SQRT 227 int n,m,xs[N],ys[N],ks[N],op[N],en,ma[100001],en2,a[100001]; int num[N],l[SQRT],r[SQRT],sumv[SQRT],sum=1;//分块 int num2[100001],l2[…