pandas中DataFrame的ix,loc,iloc索引方式的异同 1.loc: 按照标签索引,范围包括start和end 2.iloc: 在位置上进行索引,不包括end 3.ix: 先在index上索引,索引不到就在index的位置上进行索引(如果index非全整数),不包括end…
  Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制parallelism,所有的数据和操作自动并行分布在各个集群结点上.以处理in-memory数据的方式处理distributed数据.支持Hadoop,能处理大量数据 延迟机制 not lazy-evaluated lazy-evaluated 内存缓存 单机缓存 persist() or cache()将…
  Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制parallelism,所有的数据和操作自动并行分布在各个集群结点上.以处理in-memory数据的方式处理distributed数据.支持Hadoop,能处理大量数据 延迟机制 not lazy-evaluated lazy-evaluated 内存缓存 单机缓存 persist() or cache()将…
Pandas中DataFrame修改列名:使用 rename df = pd.read_csv('I:/Papers/consumer/codeandpaper/TmallData/result01-part.csv') df.rename(columns={'time_stamp':'session_id'},inplace=True) print(df) df.to_csv('I:/Papers/consumer/codeandpaper/TmallData/result01-part-re…
pandas选取数据可以通过 loc iloc  [] 来选取 使用loc选取某几列: user_fans_df = sample_data.loc[:,['uid','fans_count']] 使用[] 来选取列 reader_login_freq_df = sample_data[['reader_uid','reader_login_freq','reader_age']] []选取,应该是返回了元数据的一份视图,本质上应该没有新生成一份数据. loc应该是又返回了一份新的数据…
在pandas中,经常对数据进行处理 而导致数据索引顺序混乱,从而影响数据读取.插入等. 小笔总结了以下几种重置索引的方法: import pandas as pd import numpy as np df = pd.DataFrame(np.arange(20).reshape((5, 4)),columns=['a', 'b', 'c', 'd']) #得到df: a b c d 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 3 12 13 14 15 4 16 17 1…
1.创建 1.1  标准格式创建 DataFrame创建方法有很多,常用基本格式是:DataFrame 构造器参数:DataFrame(data=[],index=[],coloumns=[]) In [272]: df2=DataFrame(np.arange(16).reshape((4,4)),index=['a','b','c','d'],columns=['one','two','three','four']) In [273]: df2 Out[273]: one two three…
当使用pd.read_csv()方法读取csv格式文件的时候,常常会因为csv文件中带有中文字符而产生字符编码错误,造成读取文件错误,在这个时候,我们可以尝试将pd.read_csv()函数的encoding参数设置为"gbk"或者"utf-8".(这个方法在上一篇博客有介绍) 据我个人经验总结(如果有错误,还希望大神斧正),在含有中文编码的情况下,to_csv()方法的encoding参数默认为"gbk",而read_csv()方法的encod…
在SQL语言中去重是一件相当简单的事情,面对一个表(也可以称之为DataFrame)我们对数据进行去重只需要GROUP BY 就好. select custId,applyNo from tmp.online_service_startloan group by custId,applyNo 1.DataFrame去重 但是对于pandas的DataFrame格式就比较麻烦,我看了其他博客优化了如下三种方案. 我们先引入数据集: import pandas as pd data=pd.read_…
数据介绍 先随机生成一组数据: import pandas as pd import numpy as np state = ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'] year = [2000, 2001, 2002, 2003, 2004] pop = [1.3, 1.4, 1.6, 4.5, 2.7] frame = pd.DataFrame({'state': state, 'year': year, 'pop': pop}) print(f…
直接看例子: >>> data = pd.Series(np.arange(10), index=[49,48,47,46,45, 1, 2, 3, 4, 5]) >>> data 49 0 48 1 47 2 46 3 45 4 1 5 2 6 3 7 4 8 5 9 dtype: int64 >>> data.iloc[:3] 49 0 48 1 47 2 dtype: int64 >>> data.loc[:3] 49 0 48…
切片选择 #显示第一行数据print(df.head(1)) #显示倒数三行数据 print(df.tail(3)) loc  df.loc[row_index,col_index]  注意loc是根据行和列的索引进行选择的,行索引就是index,列索引就是列名. loc举例: df.loc[0,'age']=18 就能定位行索引为0,列名为‘age’的元素,然后可以直接赋值 df.loc[df.id=109,'age'] 这个就是找到id为109的索引号,然后列名还是age的元素,总之row_…
Pandas 是基于Numpy 的一种工具,是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.Pandas提供了大量能使我们快速便捷地处理数据的函数和方法. 安装命令:pip install pandas 具体操作如下:值得注意得是配置环境变量和添加项目路径要优先于导包 否则系统将检测不到pandas库 #导包 import os import sys #将脚本所在得工程添加到环境变量 绝对路径 sys.path.append(…
二.merge:通过键拼接列 类似于关系型数据库的连接方式,可以根据一个或多个键将不同的DatFrame连接起来. 该函数的典型应用场景是,针对同一个主键存在两张不同字段的表,根据主键整合到一张表里面. merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True, suffixes=('_x', '_y'), copy=Tr…
pandas提供了set_index方法可以将DataFrame的列(多列)变成行索引,通过reset_index方法可以将层次化索引的级别会被转移到列里面. 1.DataFrame的set_index方法 data = pd.DataFrame(np.arange(,).reshape(,),index=["a","b","c"],columns=["A","B","C"]) prin…
一.concat:沿着一条轴,将多个对象堆叠到一起 concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True): objs:需要连接的对象集合,一般是列表或字典: axis:连接轴向: join:参数为‘outer’或‘inner’: join_axes=[]:指定自定义的索…
目录 行的union pd.concat df.append 列的join pd.concat pd.merge df.join 行列转置 pivot stack & unstack melt 本文示例数据下载,密码:vwy3 import pandas as pd # 数据是之前在cnblog上抓取的部分文章信息 df = pd.read_csv('./data/SQL测试用数据_20200325.csv',encoding='utf-8') # 为了后续演示,抽样生成两个数据集 df1 =…
先用pandas生成数据, import numpy as npimport pandas as pddf= pd.DataFrame(np.arange(30).reshape(6,5),columns=['a','b','c','d','e']) 1.找到指定行df.loc[1] 2.找到指定列df.loc[:,'b'] 3.找到某行某列df.loc[1,'b'] 输出6 4.找到某个区域df.loc[0:2,'a':'d'] 5.按照条件找 df.loc[df.d>8]…
pandas.DataFrame.join 自己弄了很久,一看官网.感觉自己宛如智障.不要脸了,直接抄 DataFrame.join(other, on=None, how='left', lsuffix='', rsuffix='', sort=False) Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by in…
1.如何实现两个dataframe去重()? 假设df1是所有的数据,现在想去除与df2中重复的数据,也就是实现对df1进行操作,让他的数据不再包括df2. 方法一:先把需要剔除的df2的某一列(如id)用tolist输出成一个列表,然后前一个df用~isin(列表)来去除 例子: same_list=df2['ID'].tolist() df1=df1[~df1['ID'].isin(same_list)] 方法二:将df2先和df1合并,在利用drop_duplicates()去重 例子:…
let url = 'http://www.phonegap100.com/appapi.php?a=getPortalList&catid=20&page=2';let params ={    params: {        username: 'zhangSan',        pwd: '123456'    } } // get 请求this.$http.get(url, params).then((res) => {    console.log(res);},(er…
本文示例文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 开门见山,在pandas中,transform是一类非常实用的方法,通过它我们可以很方便地将某个或某些函数处理过程(非聚合)作用在传入数据的每一列上,从而返回与输入数据形状一致的运算结果. 本文就将带大家掌握pandas中关于transform的一些常用使用方式. 图1 2 pandas中的transform 在pandas中transform根…
1.df.dropna() 可以返回去掉NaN的df结果集. 2.pandas中dataframe取差集: df=pd.DataFrame({"name":[1,2,3,np.NaN,8],"value":[3,4,np.NaN,9,0]}) drop_na_df=df.dropna() na_symbols_df=pd.DataFrame(list(set(df["name"])^set(drop_na_df["name"]…
今天做地图定位展示,展示的是ApacheWeb服务器的访问日志文件中的来源IP.但是中间出现了报错环节,说是索引不能匹配到geo_point类型,实在是不懂这是在说什么,后来在网站找了方法就解决了.主要报错如下: 报错信息: No Compatible Fields: The "logstash_apachelogs" index pattern does not contain any of the following field types: geo_point” 觉得很是奇怪,再…
pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pandas DataFrame的修改方法 在操作DataFrame时,肯定会经常用到loc,iloc,at等函数,各个函数看起来差不多,但是还是有很多区别的,我们一起来看下吧. 首先,还是列出一个我们用的DataFrame,注意index一列,如下: 接下来,介绍下各个函数的用法: 1.loc函数 愿意看…
pandas中df.ix, df.loc, df.iloc 的使用场景以及区别: https://stackoverflow.com/questions/31593201/pandas-iloc-vs-ix-vs-loc-explanation # Note: in pandas version 0.20.0 and above, ix is deprecated and the use of loc and iloc is encouraged instead. # First, a reca…
在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引.比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字. 使用下标索引的时候下标总是从0开始的,而且索引值总是数字.而使用关键字进行索引,关键字是key里面的值,既可以是数字,也可以是字符串等. Series对象介绍: Series对象是由索引index和值values组成的,一个index对应一个value.其中index是pandas中的Index对象…
先看代码: In [46]: import pandas as pd In [47]: data = [[1,2,3],[4,5,6]] In [48]: index = [0,1] In [49]: columns=['a','b','c'] In [50]: df = pd.DataFrame(data=data, index=index, columns=columns) In [51]: df Out[51]: a b c 0 1 2 3 1 4 5 6 1. loc--通过行标签索引行…
参考:Pandas中关于 loc \ iloc \ ix 用法的理解 相同点 使用形式都是 df.xxx[ para1 , para2 ] #xxx表示loc iloc ix#df表示一个DataFrame实例 含义是从data提取指定行列的值,其中哪几行用para1声明,哪几列用para2声明,para1与para2的组织形式相同,一般用到的形式为以下4种: #para1取不同值时的行选取,para2取这样值时则为相应的列选取 : 所有行 0:2 第1.2行,下标为0.1 7:9 第8.9行,…
转自:http://blog.csdn.net/u011089523/article/details/60341016 用pandas中的DataFrame时选取行或列: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd…