TensorFlow(六):tensorboard网络结构】的更多相关文章

一.tensorboard网络结构 import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #载入数据集mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次的大小batch_size = 100#计算一共有多少个批次n_batch = mnist.train.num_examples // batch…
Tensorflow 笔记 -- tensorboard 的使用 TensorFlow提供非常方便的可视化命令Tensorboard,先上代码 import tensorflow as tf a = tf.constant(5, name="const_a") b = tf.constant(4, name="const_b") c = tf.multiply(a, b, name="mul_a_b") d = tf.add(a, b, name…
windows下使用tensorboard tensorflow 官网上的例子程序都是针对Linux下的:文件路径需要更改 tensorflow1.1和1.3的启动方式不一样 :参考:Running on Google Cloud found : No module named tensorflow.tensorboard Could you try using python -m tensorboard --logdir "${MODEL_DIR}" instead? I suspe…
tensorflow+inceptionv3图像分类网络结构的解析与代码实现 论文链接:论文地址 ResNet传送门:Resnet-cifar10 DenseNet传送门:DenseNet SegNet传送门:Segnet-segmentation 深度学习的火热,使得越来越多的科研人员投入到其中.而作为各种应用类型的网络基础,图像分类的网络结构有许多,从AlexNet开始,到VGG-Net,到GoogleNet,到ResNet,denseNet等.网络结构在不断地改进,也在不断地趋于稳定.新的…
# MNIST数据集 手写数字 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 载入数据集 mnist=input_data.read_data_sets('MNIST_data',one_hot=True) # 每个批次的大小 batch_size=100 # 计算一共有多少个批次 n_batch=mnist.train.num_examples//batch_size #…
在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可以显示网络结构,又可以显示训练和测试过程中各层参数的变化情况.本博文分为四个部分,第一部分介绍相关函数,第二部分是代码测试,第三部分是运行结果,第四部分介绍相关参考资料. 一. 相关函数 TensorBoard的输入是tensorflow保存summary data的日志文件.日志文件名的形式如:e…
tensorflow基于图结构深度学习框架,内部通过session实现图和计算内核交互. tensorflow基本数学运算用法. import tensorflow as tf sess = tf.Session() a = tf.placeholder("float") b = tf.placeholder("float") c = tf.constant(6.0) d = tf.mul(a, b) y = tf.mul(d, c) print sess.run(…
tbCallBack = tf.keras.callbacks.TensorBoard(log_dir='./log' , histogram_freq=0, write_graph=True, write_images=True) model.fit(x=x_train , y=y_train , epochs=20 , callbacks=[tbCallBack]) 许久不用tensorflow,发现keras的代码组织方式更直观. 记录下keras下tensorboard的使用. tens…
随着跟着TensorFlow视频学习,学到Tensorboard可视化工具这里的时候. 在windows,cmd里面运行,tensorboard --logdir=你logs文件夹地址  这行代码,一直不行. 它提示.它暗示我没配环境变量. 当我配上环境变量后,它还是提示这句. 然后我通过对比笔记本跟台式机的情况. 台式机:windows系统 python版本3.6.4 TensorFlow版本 1.5.0  能正常运行Tensorboard 笔记本:windows系统 python版本3.64…
参考https://www.cnblogs.com/felixwang2/p/9184344.html 边学习,边练习 # https://www.cnblogs.com/felixwang2/p/9184344.html # TensorFlow(七):tensorboard网络执行 # MNIST数据集 手写数字 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 参数概要…
一.TensorBoard可视化工具 TensorBoard实现形式为web应用程序,这为提供分布式.跨系统的图形界面服务带来了便利. 1.使用流程 SummaryOps->Session--(input)-->FileWriter---(add)--->Event file---(load)-->TensorBoard import tensorflow as tf with tf.name_scope('graph') as scope: matrix1 = tf.consta…
import tensorflow as tfimport numpy as np def add_layer(inputs,in_size,out_size,n_layer,activation_function=None): # add one more layer and return the output of this layer layer_name = 'layer%s' % n_layer with tf.name_scope('layer'): with tf.name_sco…
# -*- coding: utf-8 -*- """ Created on Thu Nov 1 17:51:28 2018 @author: zhen """ import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data max_steps = 1000 learning_rate = 0.001 dropout = 0.9 data_dir…
我们通常使用tensorboard 统计我们的accurate ,loss等,并绘制曲线,通常是使用一次训练中的, 但是,机器学习中通常要对比不同的 ‘超参数’给模型训练和预测能力的不同这时候如何整合多个训练模型的训练 等情况呢? 其实我们可以讲不同训练结果放在一个大文件夹中,比如训练不同learning_rate=0.1 ,0.2,0.3 我们通常是: tensorborad logdir=/.../miniset/learnrate=0.1/ tensorborad logdir=/.../…
先搞点基础的 注意注意注意,这里虽然很基础,但是代码应注意: 1.从writer开始后边就错开了 2.writer后可以直接接writer.close,也就是说可以: writer = tf.summary.FileWriter("./log", graph=g) writer.close() import tensorflow as tf g = tf.Graph() with g.as_default(): input1 = tf.get_variable("input1…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 载入数据集 mnist = input_data.read_data_sets("MNIST_data", one_hot=True) # 批次大小 batch_size = 64 # 计算一个周期一共有多少个批次 n_batch = mnist.train.num_examples // batch_size wit…
一.TensorFlow高层次机器学习API (tf.contrib.learn) 1.tf.contrib.learn.datasets.base.load_csv_with_header 加载csv格式数据 2.tf.contrib.learn.DNNClassifier 建立DNN模型(classifier) 3.classifer.fit 训练模型 4.classifier.evaluate 评价模型 5.classifier.predict 预测新样本 完整代码: from __fut…
本文基于TensorFlow官网的How-Tos写成. TensorBoard是TensorFlow自带的一个可视化工具,Embeddings是其中的一个功能,用于在二维或三维空间对高维数据进行探索. An embedding is a map from input data to points in Euclidean space. 本文使用MNIST数据讲解Embeddings的使用方法. 代码 # -*- coding: utf-8 -*- # @author: 陈水平 # @date:…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.contrib.tensorboard.plugins import projector #载入数据集 mnist = input_data.read_data_sets("MNIST_data/",one_hot=True) #运行次数 max_steps = 1001 #图片数量 ima…
一:安装cuda 下载地址 二:安装cuDNN 三:安装GPU版TensorFlow 注意:gpu版的TensorFlow打开tensorboard要使用:tensorboard --logdir C:\Users\FELIX\Desktop\tensor学习\inception_log…
TensorFlow 使用 TensorBoard 来提供计算图形的图形图像.这使得理解.调试和优化复杂的神经网络程序变得很方便.TensorBoard 也可以提供有关网络执行的量化指标.它读取 TensorFlow 事件文件,其中包含运行 TensorFlow 会话期间生成的摘要数据. 具体做法 使用 TensorBoard 的第一步是确定想要的 OP 摘要.以 DNN 为例,通常需要知道损失项(目标函数)如何随时间变化.在自适应学习率的优化中,学习率本身会随时间变化.可以在 tf.summa…
在前边几期的文章中,笔者已经用TensorFlow进行的一些基础性的探索工作,想必大家对TensorFlow框架也是非常的好奇,本着发扬雷锋精神,笔者将详细的阐述TensorFlow框架的基本用法,并尽力做到通俗易懂,对得起读者花费的时间. 行文目录 本文从以下三个方面,展开对TensorFlow的剖析: TensorFlow框架概述 TensorFlow基本操作 TensorBoard使用 TensorFlow框架概述 2015年11月9日,为加速深度学习的发展,Google发布了深度学习框架…
2.1 TensorFlow的主要依赖包 TensorFlow依赖的两个最主要的工具包——Protocol Buffer和Bazel. 2.1.1 Protocol Buffer Protocol Buffer是谷歌开发的处理结构化数据的工具.结构化数据指的是拥有多种属性的数据,比如: 当要将这些结构化的用户信息持久化或者进行网络传输时,就需要先将它们序列化.所谓序列化,是将结构化的数据变成数据流的格式,简单地说就是变为一个字符串.如何将结构化的数据序列化,并从序列化之后的数据流中还原出原来的结…
0.Tensorflow安装 1.创建会话,启动会话 2.变量 3.Fech_feed 4.线性回归 5.非线性回归 6.MNIST数据集简单分类 7.交叉熵 8.Dropout 9.正则化 10.优化器 11.Tensorboard网络结构…
chapter1 #变量 import tensorflow as tf x = tf.Variable([1,2]) a = tf.constant([3,3]) #增加一个减法op sub = tf.subtract(x,a) #增加一个假发op add = tf.add(x,sub) #初始化所有变量 init = tf.global_variables_initializer() with tf.Session() as sess: #变量初始化操作 sess.run(init) pri…
间提壶华小厨 1 Tensorflow监控指标可视化 除了GRAPHS栏目外,tensorboard还有IMAGES.AUDIO.SCALARS.HISTOGRAMS.DISTRIBUTIONS.FROJECTOR.TEXT.PR CURVES.PROFILE九个栏目,本小节将详细介绍这些子栏目各自的特点和用法. 1.1 IMAGES 图像仪表盘,可以显示通过tf.summary.image()函数来保存的png图片文件. 1. # 指定图片的数据源为输入数据x,展示的相对位置为[-1,28,2…
Docker 运行Tensorboard 和 jupyter的正确方法 网上找了很多方法都是jupyter 运行正常但不知道如何打开Tensorboard.折腾了很久,实验很多中方法最终找到了一个正确的方式. 首先创建docker volumes docker volume create --name notebooks docker volume create --name logs 注: 这个是docker创建的volume 用来供jupyter 运行的notebook 和log 保存的卷信…
Here is a popular issue when you want to use tensorbard with your upgraded tensorflow and tensorboard. In general you will get this issue, when you have mismatch of your tensorflow and tensorboard versions, for example you upgrade tensorflow to 1.13,…
下面是TensorFlow可视化MNIST数据集识别程序,可视化内容是,TensorFlow计算图,表(loss, 直方图, 标准差(stddev)) # -*- coding: utf-8 -*- import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.contrib.tensorboard.plugins import projector old_v…
#!/usr/bin/env python # -*- coding: utf-8 -*- """ ---------------------------------- Version : ?? File Name : visual_vec.py Description : Author : xijun1 Email : Date : 2018/12/25 ----------------------------------- Change Activiy : 2018/12…